PHYSICS 851, FALL 2000

1. Describe the differences between

- (a) Spherical Bessel functions $j_{\ell}(x)$,
- (b) Spherical Neumann functions $n_{\ell}(x)$.
- (c) Hankel functions $h_{\ell}(x)$
- (d) $h_{\ell}^{*}(x)$.

2. Consider the Schrödinger equation for the function $u_{\ell}(r) = rR_{\ell}(r)$,

$$-\frac{d^2}{dr^2}u_{\ell}(r) + \frac{\ell(\ell+1)}{r^2}u_{\ell}(r) = k^2u_{\ell}(r).$$

Show that if I write the wave function at small r as

$$u_{\ell} \sim r^{\alpha} \left(A_0 + A_1 r + A_2 r^2 + \cdots \right),$$

plug it into the Schrödinger equation above, and expand in r, that

- (a) $\alpha = \ell + 1$, or $-\ell$
- (b) $A_1 = 0$

3. If a particle of mass m experiences a spherical potential

$$V(r) = \frac{\beta}{r^2},$$

describe the behavior of $u_{\ell}(r)$ at small r, i.e. if $u_{\ell}(r) \sim r^{\alpha}$, what is α ?