your name(s)_

Physics 852 Quiz #11 - Friday, Jan. 31st

An atom undergoes a transition from a state with L = 2, S = 0, to a state with L = 1, S = 0. The original state was polarized, with $M_L = 2$. Consider the electromagnetic decay in the dipole approximation.

- 1. What values of M_L are allowed in the final state?
- 2. If a photon is observed in the \hat{z} direction, what is its polarization?
- 3. If a photon is observed in the $-\hat{z}$ direction, what is its polarization?
- 4. If a photon is observed in the \hat{x} direction, what is its polarization?
- 5. What is the angular distribution of photons emitted from the decay? (shape only)
- 6. If the decay rate above is γ , what is the decay rate for each of the other four original polarizations? $(M_L = 1, 0, -1, 2)$.
- 7. For each of the 5 values for M_L of the original state, find the branching ratios into each of the three possible M_f values of the final state. Use the Wigner Eckart theorem.

1.
$$M_{L} = 1$$

2. $\hat{x} + i\hat{y}$, $R \subset P$
3. $\hat{x} + i\hat{y}$, $L \subset P$
4. \hat{y} \hat{x} pant dues not comple to $\vec{\epsilon}$)
5. $\langle \vec{\epsilon} | \vec{r} | i \rangle = \Im(\hat{x} - i\hat{y})$
 $\sum_{s=in2}^{r} |\vec{\epsilon}_{s} \cdot (\hat{x} - i\hat{y})|^{2} = \sum_{s=in2}^{r} |\vec{\epsilon}_{s} \cdot (\hat{x} - i\hat{y})|^{2} - |\hat{k} \cdot (\hat{x} - i\hat{y})|^{2}$
 $= (2 - \sin^{2}\theta) \Im^{2}$
6. All must be the same

