

Physics 852 Quiz #12 - Friday, Feb. 7th

Consider a harmonic oscillator, which you will fill up with neutrons. The single-particle levels are originally separated by energies $\hbar \omega$. A spin-orbit interaction is then added,

$$H_{s.o.} = -rac{eta}{\hbar^2} ec{L} \cdot ec{S} = -eta [j(j+1) - \ell(\ell+1) - 3/4]/2,$$

and a final term is added that depends only on ℓ_{ℓ}

$$H_L = -rac{lpha}{\hbar^2} |ec{L}|^2 = -lpha [\ell(\ell+1)].$$

Choose $\beta = 0.12\hbar\omega$ and $\alpha = 0.02\hbar\omega$. Let N refer to the original quantum excitation in the absence of the the spin-orbit and ℓ -dependent interactions, i.e. $E = \hbar\omega(N + 3/2)$.

Make an energy-level diagram for all levels with $N \leq 7$. Plot the energies E_i in units of $\hbar\omega$ (set $\hbar\omega=1$). Label each level by N,j,ℓ and E_i . The level diagram should consist of a short horizontal line for each level, where the height is proportional to E_i .