
Parton Distribution Funtions andQCD Global FittingJon Pumplin { 3 Deember 2003Riken/BNL Workshop on High pT physis at RHICHigh energy hadrons interat through their quark andgluon onstituents. The interations beome weak atshort distanes due to the asymptoti freedom prop-erty of Quantum Chromodynamis, allowing pertur-bation theory to be applied to a rih variety of exper-iments.The nonperturbative nature of the proton for singleinterations is haraterized by Parton DistributionFuntions f(Q, x) of momentum sale Q and light-one momentum fration x for eah avor. Evolutionin Q is determined perturbatively by QCD renormal-ization group equations, so f(Q, x) an be de�ned byfuntions f(Q0, x) of x at a �xed small Q0. Thosefuntions are measured by �tting a wide range of data.Known and unknown systemati errors pose a hal-lenge to global �tting.The appliability of single nuleon PDFs to hard sat-terings between heavy nulei is a key question to beaddressed in the workshop.



Outline of talk
• Introdution to PDFs
• Handling orrelated experimental errors
• Estimating unertainties
• Eigenvetor PDF sets
• Lagrange multipliers
• Reweighting experiments
• Bootstrap methods
• Appliation: Jet preditionsCollaborators: D. Stump, W.K. Tung, J. Huston, P. Nadolsky,F. Olness, S. Kuhlmann, J. Owens; S. Kretzer, J. Collins



Global QCD analysis
• Extrat universal non-perturbative features ofproton or nuleus from large variety ofexperiments{ Fatorization(Short distane and long distane separable){ Asymptoti Freedom(Hard sattering perturbatively alulable){ Renormalization Group Evolution in sale Q(PDFs haraterized by funtions of x at Q0)
• Test onsisteny of QCD { overall and withindividual experiments
• Make results available { needed by allexperiments with hadron beams or targets:HERA, RHIC, Tevatron, LHC, non-aelerator
• Explore the range of unertainties
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Experimental
Input

Parton Distributions:
Nonperturbative parametrization at Q

0
DGLAP Evolution to Q

Hard Scattering:
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Kinemati region overed by data

Data with a wide range of sales are tied together bythe DGLAP renormalization group evolutionequation.Consisteny or inonsisteny between the di�erentproesses an be observed only by applying QCD totie them together in a global �t.HERA II, Tevatron run II (W, Z prodution), andLHC will dramatially extend the range and auray.



CTEQ6 Global analysisInput from Experiment:
• ∼ 2000 data points with Q > 2GeV from e, µ, νDIS; lepton pair prodution (DY); leptonasymmetry in W prodution; high pT inlusivejets; αs(MZ) from LEPInput from Theory:
• NLO QCD evolution and hard sattering
• Parametrize at Q0:

A0 xA1 (1− x)A2 eA3x(1 +A4x)A5
• s = �s = 0.4 (�u+ �d)/2 at Q0; no intrinsi b or cConstrut e�etive χ2global = ∑exptsχ2n:
• χ2global inludes the known systemati errors
• Minimizing χ2global yields \Best Fit" PDFs.
• Variation of χ2global in neighborhood of theminimum de�nes unertainty limits.
• Estimate unertainty as region of parameterspae where χ2 < χ2(BestFit) + T2 with T ≈ 10.(Quite di�erent from Gaussian statistis beause ofunknown orrelated systemati errors in theory andexperiments { as measured by inonsisteny betweenexperiments).



Parton distributions at Q = 2 and 100 GeV

• Valene quarks dominate for x → 1
• Gluon dominates for x → 0, espeially at large Q



Comment on ParametrizationFor dval, uval, or g, we use
xf(x, Q0) = A0 xA1 (1− x)A2 eA3x(1 + eA4x)A5This orresponds to

d

dx
ln (xf) = A1

x
− A21− x

+ c3+ c4x1+ c5xi.e., we add a 1:1 Pad�e form to the singular terms ofthe traditional A0 xA1 (1− x)A2 parametrization.A suÆiently exible parametrization is important;but for onvergene, there must not be too many\at diretions." For that reason, some of theparameters are frozen for some avors.(To measure a set of ontinuous PDF funtions at Q0 on thebasis of a �nite set of data points would appear to be anill-posed mathematial problem. However, this diÆulty is notso severe as might be expeted sine the atual preditions ofinterest that are based on the PDFs are disrete quantities. Inpartiular, �ne-sale struture in x in the PDFs at Q0 tend tobe smoothed out by evolution in Q. They orrespond to atdiretions in χ2 spae, so they are not aurately measured; butthey have little e�et on the appliations of interest.)



χ2 and Systemati ErrorsThe simplest de�nition
χ20 = N∑

i=1 (Di − Ti)2
σ2i 





Di = data
Ti = theory
σi = \expt. error"is optimal for random Gaussian errors,

Di = Ti + σiri with P (r) = e−r2/2
√2π

.With systemati errors,
Di = Ti(a) + αirstat,i + K∑

k=1 rkβki .The �tting parameters are {aλ} (theoretial model) and {rk}(orretions for systemati errors).Published experimental errors:
• αi is the `standard deviation' of the random unorrelatederror.
• βki is the `standard deviation' of the k th (ompletelyorrelated!) systemati error on Di.



To take into aount the systemati errors, we de�ne
χ′2(aλ, rk) = N∑

i=1 (
Di −

∑
k rkβki − Ti

)2
α2

i

+∑

k

r2k ,and minimize with respet to {rk}. The result is
r̂k = ∑

k′

(
A−1)

kk′ Bk′, (systemati shift)where
Akk′ = δkk′ + N∑

i=1 βkiβk′i

α2
i

Bk = N∑

i=1 βki (Di − Ti)
α2

i

.The r̂k's depend on the PDF model parameters {aλ}. We ansolve for them expliitly sine the dependene is quadrati.We then minimize the remaining χ2(a) with respet to themodel parameters {aλ}.
• {aλ} determine fi(x, Q20).
• {r̂k} are are the optimal \orretions" for systematierrors; i.e., systemati shifts to be applied to the datapoints to bring the data from di�erent experiments intoompatibility, within the framework of the theoretialmodel.



Comparison of CTEQ6M �t to data setswith orrelated systemati errorsdata set Ne χ2e χ2e/NeBCDMS p 339 377.6 1.114BCDMS d 251 279.7 1.114H1a 104 98.59 0.948H1b 126 129.1 1.024ZEUS 229 262.6 1.147NMC F2p 201 304.9 1.517NMC F2d/p 123 111.8 0.909D� jet 90 69.0 0.766CDF jet 33 48.57 1.472Observe that χ2/Npt is lose to 1.0 | but not aslose as would be expeted if we lived in the idealzedworld of statistis.



CTEQ6M �t to ZEUS data at low x
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The data points inlude the estimated orretionsfor systemati errors. That is to say, the entral valuesplotted have been shifted by an amount that is onsistent withthe estimated systemati errors, where the systemati errorparameters are determined using other experiments via theglobal �t.The error bars are statistial errors only.



Systemati Error treatment works
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(a) Histogram of residuals for the ZEUS data. Theurve is a Gaussian of width 1.
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(b) Similar omparison without orretions forsystemati errors on the data points.



Systemati shifts for the ZEUS data(10 systemati errors)
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Systemati shifts for the NMC data(11 systemati errors)
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The systemati error shifts determined by the �t areof order 1 in units of the errors quoted for them bythe experiments, as one would hope.



CDF inlusive jet ross setion
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These inlusive jet ross setion measurementsprovided the �rst major stimulus to the study ofPDF unertainties { in partiular, the unertaintiesassoiated with hoies made in the form ofparametrizations at Q0.



Values of the �tted systemati error parameters forCDF Inlusive jet ross setion:
k r̂k1 −0.5112 0.8163 0.0224 1.3475 −1.3076 0.0897 −0.222All parameters are ∼<1 as they should be.



Soures of unertainty:1. Experimental errors inluded in χ22. Unknown experimental errors3. Parametrization dependene4. Higher-order orretions & Large Logarithms5. Power Law orretions (\higher twist")Fundamental diÆulties:1. Good experiments run until systemati errorsdominate: the magnitude of remainingsystemati errors involves guesswork.2. Systemati errors of the theory and theirorrelations are even harder to guess.3. Quasi{ill-posed problem: determine ontinuousfuntions from disrete data set4. Some ombinations of variables areunonstrained, e.g., s − �s before NuTeV data.ApproahUse \χ2" as measure of �t, but vary weights ofexperiments to estimate range of aeptable �ts,rather that relying on the lassial �χ2 = 1.



Essene of the Unertainty Problem
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Suppose the quantity θ is measured by two di�erentexperiments, or extrated using two di�erentapproximations to the True Theory.What would you quote as the Best Fit and theUnertainty? (Perhaps you would expand the errorsso the unertainty range overs both data sets; orperhaps you would expand the unertainty rangeeven more, by taking the di�erene between thesesets as a measure of the unertainty.)What happens to the Best Fit value when therelative weight of the two experiments is varied?(Note that you an reprodue your deisions abovewith just this information; this is important insituations like the Global Fit, where disagreementsbetween experiments are not expliit.)



MSU/CTEQ unertainty methods
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• Hessian Matrix Method: eigenvetors oferror matrix yield 40 sets {S±
i } that are displaed\up" or \down" by �χ2 = 100 from the best �t.Get error by sum of squares and onstrutextreme PDFs for any observable; or simply lookat extremes from the 40 sets.

• Lagrange Multiplier Method: Trak χ2 asfuntion of F (e.g. σW ) by minimizing χ2+ λF .Yields speial-purpose PDFs that give extremesof σW , or 〈y〉 for rapidity distribution of W , or σfor t�t prodution; or . . .



Hessian (Error Matrix) methodClassial error formulae�χ2 = ∑

ij

(ai − a
(0)
i )(H)ij(aj − a

(0)
j )

(�F)2 =�χ2 ∑

ij

∂F

∂ai
(H−1)ij ∂F

∂ajHessian matrix H is inverse of error matrix.Diret appliation fails beause of extremedi�erenes in variation of χ2 for di�erent diretionsin parameter spae (\steep" and \at" diretions),as shown by large range of eigenvalues of H: Thesoure of the instability is the need to parametrizeontinuous funtions: one keeps inluding moreparameters until minimum itself is barely stable.
Eigenvalues of Hessian matrix



Convergene problems in the minimization are solvedby an iterative method that �nds and resales theeigenvetors of H, leading to a diagonal form�χ2 = ∑

i

z2i
(�F)2 = ∑

i

(
F(S(+)

i ) − F(S(−)i ))2where S
(+)
i and S

(+)
i are PDF sets that are displaedalong the eigenvetor diretions.The eigenvetor PDF sets are published, along withthe Best Fit, for estimating PDF unertainties ofpreditions.



New ways to measure onsisteny of �t(Work in progress with John Collins)Key idea: In addition to theHypothesis-testing riterion: �χ2 ∼
√2Nuse the strongerParameter-�tting riterion: �χ2 ∼ 1Parameters here are relative weights assigned tovarious experiments, or to results obtained usingvarious experimental methods. Examples:

• Plot minimum χ2i vs. χ2tot − χ2i , where χ2i is oneof the experiments, or all data on nulei, or alldata at low Q2,. . .or
• Plot both as funtion of Lagrange multiplier uwhere (1− u)χ2i + (1+ u)(χ2tot − χ2i ) is thequantity minimized.Can obtain quantitative results by �tting to a modelwith a single ommon parameter p:

χ2i = A + (
psin θ

)2 ⇒ p = 0± sin θ

χ2not i = B + (
p−Sos θ

)2 ⇒ p = S ± os θThese di�er by S ±1, i.e., by S \standard deviations"



NMC D2/H2  
NMC D2/H2

S = 2.6

BCDMS D2

BCDMS D2
S = 7.6

Fits to 8 of the experiments in the CTEQ5 analysisExpt 1 2 3 4 5 6 7 8
S 2.7 3.3 3.3 4.2 5.3 7.6 7.4 8.3tanφ 0.56 0.54 0.99 0.86 0.71 1.14 0.65 0.39



Frational unertainty of gluon

Unertainty bands (envelope of possible �ts) for thegluon distribution at Q2 = 10GeV2.Curves show CTEQ5M1 (solid), CTEQ5HJ(dashed), MRST2001 (dotted)Di�erenes between these are omparable to theestimated unertainty(?!Unertainties of quark distributions are muh smallerthan this beause DIS measurements see the quarkharge in leading order.



Statistial Bootstrap methodGenerate random weights for eah of the 16experiments in global �t by dP
dWi

= e−Wi. Find best�t for eah set of weights. Repeat 200 times andtake the entral 90% at eah x as the measure ofunertainty range. Shows sizable unertainty with noad ho assumption suh as �χ2 = 100.

Traditional statistial bootstrap (Efron and Tibshirani) usesinteger weights 0− 16 de�ned by random seletion; thisontinuum method is similar but avoids zero weights.



Summary of Unertainty MethodsConsistent estimates of the unertainty ranges arefound using several di�erent methods:
• \Hessian Method" { eigenvetors of the errormatrix
• \Lagrange Multiplier Method" { variation of χ2
• systemati reweighting of experiments
• random reweighting (statistial bootstrap)Small exampleThe number of valene up and down quarks isnormally onstrained in our global �ts to theStandard Model values Nu = 2, Nd = 1, where

Nu = ∫ 10 [u(x)− �u(x)℄ dx

Nd = ∫ 10 [d(x)− �d(x)℄ dxIf Nu and Nd are made free parameters, the Best Fithas Nu = 2.08 and Nd = 1.11, with \improvement"in χ2 of 4.0 .This is to be interpreted as a nie demonstration ofonsisteny with the standard model|not as a(∼ 90%-on�dene) anomaly.



Unertainty of Gluon distribution

Red: Weight 50 for CDF Jet Blue: Weight 50 for D� JetConsisteny hek: Estimated unertainty is omparable to thedi�erene between nominally similar experiments.Area under urve is proportional to momentum fration arriedby gluon { strongly onstrained by DIS data. Hene theenvelope itself is not an allowed solution.

Convergent Evolution: Unertainty smaller at large Q



Appliation: W rapidity distributionOur methods allow us to alulate the extremepreditions due to PDF unertainty for whateverquantity is of experimental interest.For example, extremes of σW , 〈y〉, 〈y2〉 for Wprodution at FNAL { relevant for MWmeasurement:

Same urves after subtrating entral values:

Important for measuring W mass at FNAL.



Appliation: Unertainties ofluminosity funtions at LHC
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• One omponent of the unertainty in preditingthe Higgs prodution ross setion at LHC is anunertainty of 8% due to PDF unertainty.



Appliation: Inlusive jet ratioInlusive jet energy dependene
dσ

dPT
(1.96TeV)

dσ
dPT

(1.80TeV)between Tevatron Run I and Run II o�ers a sensitivetest of QCD and a probe for quark substruture,beause many systemati errors anel. Right now itis an important hek on the experimental jet\energy sale" alibration.

Predition and unertainty range from CTEQ6.1



Outlook { I
• Parton Distribution Funtions are a neessaryinfrastruture for preision Standard Modelstudies and New Physis searhes at hadronolliders and experiments using hadron targets.
• PDFs of the proton (+ neutron via isospin) areinreasingly well measured.
• Useful tools are in plae to estimate theunertainty of PDFs and to propagate thoseunertainties to physial preditions. There isadequate agreement between various methodsfor estimating the unertainty.
• The \Les Houhes Aord" interfae makes iteasy to handle the large number of PDFsolutions that are needed to haraterizeunertainties. [hep-ph/0204316℄
• Work in progress to extrat s(x) and �s(x) usingthe NuTeV dimuon data. Important result: theunertainty in s(x)− �s(x) is large enough toredue the \NuTeV anomaly" for sin θW to a1.5σ e�et.
• Work in progress to inlude the possibility of alight gluino.



Outlook { II
• Improvements in the treatment of heavy quarke�ets are in progress, and together withneutrino experiments they will allow improvedavor di�erentiation.
• PDFs summarize fundamental nonperturbativephysis of the proton { a hallenge to beomputed! (Moments of meson PDFs have beendone on lattie.)
• Other non-perturbative methods, e.g. for

s(x)− �s(x)?
• HERA and Fermilab run II data will provide thenext major experimental steps forward, followedby LHC.
• Theoretial improvements suh as resummationto use diret photon and W transversemomentum data will be useful.
• In view of possible isospin breaking, and theimportane of nulear shadowing &anti-shadowing e�ets, HERA measurements ondeuterons would be highly welome.
• Extensions of the PDF analysis to inlude spinand \unintegrated" PDFs are underwayelsewhere.


