
Parton Distribution Fun
tions andQCD Global FittingJon Pumplin { 3 De
ember 2003Riken/BNL Workshop on High pT physi
s at RHICHigh energy hadrons intera
t through their quark andgluon 
onstituents. The intera
tions be
ome weak atshort distan
es due to the asymptoti
 freedom prop-erty of Quantum Chromodynami
s, allowing pertur-bation theory to be applied to a ri
h variety of exper-iments.The nonperturbative nature of the proton for singleintera
tions is 
hara
terized by Parton DistributionFun
tions f(Q, x) of momentum s
ale Q and light-
one momentum fra
tion x for ea
h 
avor. Evolutionin Q is determined perturbatively by QCD renormal-ization group equations, so f(Q, x) 
an be de�ned byfun
tions f(Q0, x) of x at a �xed small Q0. Thosefun
tions are measured by �tting a wide range of data.Known and unknown systemati
 errors pose a 
hal-lenge to global �tting.The appli
ability of single nu
leon PDFs to hard s
at-terings between heavy nu
lei is a key question to beaddressed in the workshop.



Outline of talk
• Introdu
tion to PDFs
• Handling 
orrelated experimental errors
• Estimating un
ertainties
• Eigenve
tor PDF sets
• Lagrange multipliers
• Reweighting experiments
• Bootstrap methods
• Appli
ation: Jet predi
tionsCollaborators: D. Stump, W.K. Tung, J. Huston, P. Nadolsky,F. Olness, S. Kuhlmann, J. Owens; S. Kretzer, J. Collins



Global QCD analysis
• Extra
t universal non-perturbative features ofproton or nu
leus from large variety ofexperiments{ Fa
torization(Short distan
e and long distan
e separable){ Asymptoti
 Freedom(Hard s
attering perturbatively 
al
ulable){ Renormalization Group Evolution in s
ale Q(PDFs 
hara
terized by fun
tions of x at Q0)
• Test 
onsisten
y of QCD { overall and withindividual experiments
• Make results available { needed by allexperiments with hadron beams or targets:HERA, RHIC, Tevatron, LHC, non-a

elerator
• Explore the range of un
ertainties
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Experimental
Input


Parton Distributions:
Nonperturbative parametrization at Q


0
DGLAP Evolution to Q

Hard Scattering:



(Perturbatively
Calculable)

=



Kinemati
 region 
overed by data

Data with a wide range of s
ales are tied together bythe DGLAP renormalization group evolutionequation.Consisten
y or in
onsisten
y between the di�erentpro
esses 
an be observed only by applying QCD totie them together in a global �t.HERA II, Tevatron run II (W, Z produ
tion), andLHC will dramati
ally extend the range and a

ura
y.



CTEQ6 Global analysisInput from Experiment:
• ∼ 2000 data points with Q > 2GeV from e, µ, νDIS; lepton pair produ
tion (DY); leptonasymmetry in W produ
tion; high pT in
lusivejets; αs(MZ) from LEPInput from Theory:
• NLO QCD evolution and hard s
attering
• Parametrize at Q0:

A0 xA1 (1− x)A2 eA3x(1 +A4x)A5
• s = �s = 0.4 (�u+ �d)/2 at Q0; no intrinsi
 b or cConstru
t e�e
tive χ2global = ∑exptsχ2n:
• χ2global in
ludes the known systemati
 errors
• Minimizing χ2global yields \Best Fit" PDFs.
• Variation of χ2global in neighborhood of theminimum de�nes un
ertainty limits.
• Estimate un
ertainty as region of parameterspa
e where χ2 < χ2(BestFit) + T2 with T ≈ 10.(Quite di�erent from Gaussian statisti
s be
ause ofunknown 
orrelated systemati
 errors in theory andexperiments { as measured by in
onsisten
y betweenexperiments).



Parton distributions at Q = 2 and 100 GeV

• Valen
e quarks dominate for x → 1
• Gluon dominates for x → 0, espe
ially at large Q



Comment on ParametrizationFor dval, uval, or g, we use
xf(x, Q0) = A0 xA1 (1− x)A2 eA3x(1 + eA4x)A5This 
orresponds to

d

dx
ln (xf) = A1

x
− A21− x

+ c3+ c4x1+ c5xi.e., we add a 1:1 Pad�e form to the singular terms ofthe traditional A0 xA1 (1− x)A2 parametrization.A suÆ
iently 
exible parametrization is important;but for 
onvergen
e, there must not be too many\
at dire
tions." For that reason, some of theparameters are frozen for some 
avors.(To measure a set of 
ontinuous PDF fun
tions at Q0 on thebasis of a �nite set of data points would appear to be anill-posed mathemati
al problem. However, this diÆ
ulty is notso severe as might be expe
ted sin
e the a
tual predi
tions ofinterest that are based on the PDFs are dis
rete quantities. Inparti
ular, �ne-s
ale stru
ture in x in the PDFs at Q0 tend tobe smoothed out by evolution in Q. They 
orrespond to 
atdire
tions in χ2 spa
e, so they are not a

urately measured; butthey have little e�e
t on the appli
ations of interest.)



χ2 and Systemati
 ErrorsThe simplest de�nition
χ20 = N∑

i=1 (Di − Ti)2
σ2i 





Di = data
Ti = theory
σi = \expt. error"is optimal for random Gaussian errors,

Di = Ti + σiri with P (r) = e−r2/2
√2π

.With systemati
 errors,
Di = Ti(a) + αirstat,i + K∑

k=1 rkβki .The �tting parameters are {aλ} (theoreti
al model) and {rk}(
orre
tions for systemati
 errors).Published experimental errors:
• αi is the `standard deviation' of the random un
orrelatederror.
• βki is the `standard deviation' of the k th (
ompletely
orrelated!) systemati
 error on Di.



To take into a

ount the systemati
 errors, we de�ne
χ′2(aλ, rk) = N∑

i=1 (
Di −

∑
k rkβki − Ti

)2
α2

i

+∑

k

r2k ,and minimize with respe
t to {rk}. The result is
r̂k = ∑

k′

(
A−1)

kk′ Bk′, (systemati
 shift)where
Akk′ = δkk′ + N∑

i=1 βkiβk′i

α2
i

Bk = N∑

i=1 βki (Di − Ti)
α2

i

.The r̂k's depend on the PDF model parameters {aλ}. We 
ansolve for them expli
itly sin
e the dependen
e is quadrati
.We then minimize the remaining χ2(a) with respe
t to themodel parameters {aλ}.
• {aλ} determine fi(x, Q20).
• {r̂k} are are the optimal \
orre
tions" for systemati
errors; i.e., systemati
 shifts to be applied to the datapoints to bring the data from di�erent experiments into
ompatibility, within the framework of the theoreti
almodel.



Comparison of CTEQ6M �t to data setswith 
orrelated systemati
 errorsdata set Ne χ2e χ2e/NeBCDMS p 339 377.6 1.114BCDMS d 251 279.7 1.114H1a 104 98.59 0.948H1b 126 129.1 1.024ZEUS 229 262.6 1.147NMC F2p 201 304.9 1.517NMC F2d/p 123 111.8 0.909D� jet 90 69.0 0.766CDF jet 33 48.57 1.472Observe that χ2/Npt is 
lose to 1.0 | but not as
lose as would be expe
ted if we lived in the idealzedworld of statisti
s.



CTEQ6M �t to ZEUS data at low x
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The data points in
lude the estimated 
orre
tionsfor systemati
 errors. That is to say, the 
entral valuesplotted have been shifted by an amount that is 
onsistent withthe estimated systemati
 errors, where the systemati
 errorparameters are determined using other experiments via theglobal �t.The error bars are statisti
al errors only.



Systemati
 Error treatment works

�4 �2 0 2 4
�i

0

20

40

60

80

100

N

ZEUS

(a) Histogram of residuals for the ZEUS data. The
urve is a Gaussian of width 1.
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(b) Similar 
omparison without 
orre
tions forsystemati
 errors on the data points.



Systemati
 shifts for the ZEUS data(10 systemati
 errors)

-2 -1 0 1 2 3
r`

1

2

3

4

1

2

3

4
ZEUS shifts

Systemati
 shifts for the NMC data(11 systemati
 errors)
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The systemati
 error shifts determined by the �t areof order 1 in units of the errors quoted for them bythe experiments, as one would hope.



CDF in
lusive jet 
ross se
tion
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These in
lusive jet 
ross se
tion measurementsprovided the �rst major stimulus to the study ofPDF un
ertainties { in parti
ular, the un
ertaintiesasso
iated with 
hoi
es made in the form ofparametrizations at Q0.



Values of the �tted systemati
 error parameters forCDF In
lusive jet 
ross se
tion:
k r̂k1 −0.5112 0.8163 0.0224 1.3475 −1.3076 0.0897 −0.222All parameters are ∼<1 as they should be.



Sour
es of un
ertainty:1. Experimental errors in
luded in χ22. Unknown experimental errors3. Parametrization dependen
e4. Higher-order 
orre
tions & Large Logarithms5. Power Law 
orre
tions (\higher twist")Fundamental diÆ
ulties:1. Good experiments run until systemati
 errorsdominate: the magnitude of remainingsystemati
 errors involves guesswork.2. Systemati
 errors of the theory and their
orrelations are even harder to guess.3. Quasi{ill-posed problem: determine 
ontinuousfun
tions from dis
rete data set4. Some 
ombinations of variables areun
onstrained, e.g., s − �s before NuTeV data.Approa
hUse \χ2" as measure of �t, but vary weights ofexperiments to estimate range of a

eptable �ts,rather that relying on the 
lassi
al �χ2 = 1.



Essen
e of the Un
ertainty Problem
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Suppose the quantity θ is measured by two di�erentexperiments, or extra
ted using two di�erentapproximations to the True Theory.What would you quote as the Best Fit and theUn
ertainty? (Perhaps you would expand the errorsso the un
ertainty range 
overs both data sets; orperhaps you would expand the un
ertainty rangeeven more, by taking the di�eren
e between thesesets as a measure of the un
ertainty.)What happens to the Best Fit value when therelative weight of the two experiments is varied?(Note that you 
an reprodu
e your de
isions abovewith just this information; this is important insituations like the Global Fit, where disagreementsbetween experiments are not expli
it.)



MSU/CTEQ un
ertainty methods
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• Hessian Matrix Method: eigenve
tors oferror matrix yield 40 sets {S±
i } that are displa
ed\up" or \down" by �χ2 = 100 from the best �t.Get error by sum of squares and 
onstru
textreme PDFs for any observable; or simply lookat extremes from the 40 sets.

• Lagrange Multiplier Method: Tra
k χ2 asfun
tion of F (e.g. σW ) by minimizing χ2+ λF .Yields spe
ial-purpose PDFs that give extremesof σW , or 〈y〉 for rapidity distribution of W , or σfor t�t produ
tion; or . . .



Hessian (Error Matrix) methodClassi
al error formulae�χ2 = ∑

ij

(ai − a
(0)
i )(H)ij(aj − a

(0)
j )

(�F)2 =�χ2 ∑

ij

∂F

∂ai
(H−1)ij ∂F

∂ajHessian matrix H is inverse of error matrix.Dire
t appli
ation fails be
ause of extremedi�eren
es in variation of χ2 for di�erent dire
tionsin parameter spa
e (\steep" and \
at" dire
tions),as shown by large range of eigenvalues of H: Thesour
e of the instability is the need to parametrize
ontinuous fun
tions: one keeps in
luding moreparameters until minimum itself is barely stable.
Eigenvalues of Hessian matrix



Convergen
e problems in the minimization are solvedby an iterative method that �nds and res
ales theeigenve
tors of H, leading to a diagonal form�χ2 = ∑

i

z2i
(�F)2 = ∑

i

(
F(S(+)

i ) − F(S(−)i ))2where S
(+)
i and S

(+)
i are PDF sets that are displa
edalong the eigenve
tor dire
tions.The eigenve
tor PDF sets are published, along withthe Best Fit, for estimating PDF un
ertainties ofpredi
tions.



New ways to measure 
onsisten
y of �t(Work in progress with John Collins)Key idea: In addition to theHypothesis-testing 
riterion: �χ2 ∼
√2Nuse the strongerParameter-�tting 
riterion: �χ2 ∼ 1Parameters here are relative weights assigned tovarious experiments, or to results obtained usingvarious experimental methods. Examples:

• Plot minimum χ2i vs. χ2tot − χ2i , where χ2i is oneof the experiments, or all data on nu
lei, or alldata at low Q2,. . .or
• Plot both as fun
tion of Lagrange multiplier uwhere (1− u)χ2i + (1+ u)(χ2tot − χ2i ) is thequantity minimized.Can obtain quantitative results by �tting to a modelwith a single 
ommon parameter p:

χ2i = A + (
psin θ

)2 ⇒ p = 0± sin θ

χ2not i = B + (
p−S
os θ

)2 ⇒ p = S ± 
os θThese di�er by S ±1, i.e., by S \standard deviations"



NMC D2/H2  
NMC D2/H2

S = 2.6

BCDMS D2

BCDMS D2
S = 7.6

Fits to 8 of the experiments in the CTEQ5 analysisExpt 1 2 3 4 5 6 7 8
S 2.7 3.3 3.3 4.2 5.3 7.6 7.4 8.3tanφ 0.56 0.54 0.99 0.86 0.71 1.14 0.65 0.39



Fra
tional un
ertainty of gluon

Un
ertainty bands (envelope of possible �ts) for thegluon distribution at Q2 = 10GeV2.Curves show CTEQ5M1 (solid), CTEQ5HJ(dashed), MRST2001 (dotted)Di�eren
es between these are 
omparable to theestimated un
ertainty(?!Un
ertainties of quark distributions are mu
h smallerthan this be
ause DIS measurements see the quark
harge in leading order.



Statisti
al Bootstrap methodGenerate random weights for ea
h of the 16experiments in global �t by dP
dWi

= e−Wi. Find best�t for ea
h set of weights. Repeat 200 times andtake the 
entral 90% at ea
h x as the measure ofun
ertainty range. Shows sizable un
ertainty with noad ho
 assumption su
h as �χ2 = 100.

Traditional statisti
al bootstrap (Efron and Tibshirani) usesinteger weights 0− 16 de�ned by random sele
tion; this
ontinuum method is similar but avoids zero weights.



Summary of Un
ertainty MethodsConsistent estimates of the un
ertainty ranges arefound using several di�erent methods:
• \Hessian Method" { eigenve
tors of the errormatrix
• \Lagrange Multiplier Method" { variation of χ2
• systemati
 reweighting of experiments
• random reweighting (statisti
al bootstrap)Small exampleThe number of valen
e up and down quarks isnormally 
onstrained in our global �ts to theStandard Model values Nu = 2, Nd = 1, where

Nu = ∫ 10 [u(x)− �u(x)℄ dx

Nd = ∫ 10 [d(x)− �d(x)℄ dxIf Nu and Nd are made free parameters, the Best Fithas Nu = 2.08 and Nd = 1.11, with \improvement"in χ2 of 4.0 .This is to be interpreted as a ni
e demonstration of
onsisten
y with the standard model|not as a(∼ 90%-
on�den
e) anomaly.



Un
ertainty of Gluon distribution

Red: Weight 50 for CDF Jet Blue: Weight 50 for D� JetConsisten
y 
he
k: Estimated un
ertainty is 
omparable to thedi�eren
e between nominally similar experiments.Area under 
urve is proportional to momentum fra
tion 
arriedby gluon { strongly 
onstrained by DIS data. Hen
e theenvelope itself is not an allowed solution.

Convergent Evolution: Un
ertainty smaller at large Q



Appli
ation: W rapidity distributionOur methods allow us to 
al
ulate the extremepredi
tions due to PDF un
ertainty for whateverquantity is of experimental interest.For example, extremes of σW , 〈y〉, 〈y2〉 for Wprodu
tion at FNAL { relevant for MWmeasurement:

Same 
urves after subtra
ting 
entral values:

Important for measuring W mass at FNAL.



Appli
ation: Un
ertainties ofluminosity fun
tions at LHC
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• One 
omponent of the un
ertainty in predi
tingthe Higgs produ
tion 
ross se
tion at LHC is anun
ertainty of 8% due to PDF un
ertainty.



Appli
ation: In
lusive jet ratioIn
lusive jet energy dependen
e
dσ

dPT
(1.96TeV)

dσ
dPT

(1.80TeV)between Tevatron Run I and Run II o�ers a sensitivetest of QCD and a probe for quark substru
ture,be
ause many systemati
 errors 
an
el. Right now itis an important 
he
k on the experimental jet\energy s
ale" 
alibration.

Predi
tion and un
ertainty range from CTEQ6.1



Outlook { I
• Parton Distribution Fun
tions are a ne
essaryinfrastru
ture for pre
ision Standard Modelstudies and New Physi
s sear
hes at hadron
olliders and experiments using hadron targets.
• PDFs of the proton (+ neutron via isospin) arein
reasingly well measured.
• Useful tools are in pla
e to estimate theun
ertainty of PDFs and to propagate thoseun
ertainties to physi
al predi
tions. There isadequate agreement between various methodsfor estimating the un
ertainty.
• The \Les Hou
hes A

ord" interfa
e makes iteasy to handle the large number of PDFsolutions that are needed to 
hara
terizeun
ertainties. [hep-ph/0204316℄
• Work in progress to extra
t s(x) and �s(x) usingthe NuTeV dimuon data. Important result: theun
ertainty in s(x)− �s(x) is large enough toredu
e the \NuTeV anomaly" for sin θW to a1.5σ e�e
t.
• Work in progress to in
lude the possibility of alight gluino.



Outlook { II
• Improvements in the treatment of heavy quarke�e
ts are in progress, and together withneutrino experiments they will allow improved
avor di�erentiation.
• PDFs summarize fundamental nonperturbativephysi
s of the proton { a 
hallenge to be
omputed! (Moments of meson PDFs have beendone on latti
e.)
• Other non-perturbative methods, e.g. for

s(x)− �s(x)?
• HERA and Fermilab run II data will provide thenext major experimental steps forward, followedby LHC.
• Theoreti
al improvements su
h as resummationto use dire
t photon and W transversemomentum data will be useful.
• In view of possible isospin breaking, and theimportan
e of nu
lear shadowing &anti-shadowing e�e
ts, HERA measurements ondeuterons would be highly wel
ome.
• Extensions of the PDF analysis to in
lude spinand \unintegrated" PDFs are underwayelsewhere.


