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The goal of this talk is to give an overview of tech-

niques used to measure Parton Distribution Functions

by the CTEQ group, with an eye toward extending

those techniques to measure polarized Parton Distri-

butions.

Outline
1. Introduction to PDFs

2. Results from the unpolarized analysis

3. Details of the implementation

• Handling correlated experimental errors

• Estimating uncertainties

• Eigenvector PDF sets

4. The Lagrange multiplier method

5. Outlook for polarized PDFs
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Introduction to PDFs
High energy hadrons interact through their quark

and gluon constituents. At short distance scales —

e.g. large momentum transfer — QCD interactions

become weak due to asymptotic freedom, which

allows us to apply perturbation theory to a rich

variety of experiments.

The complicated nonperturbative long-distance

nature of the proton then shows itself only through

the Parton Distribution Functions f(Q, x) of

momentum scale Q and light-cone momentum

fraction x for each flavor. It is convenient to think of

these loosely as “one-particle” probability

distributions; although that is not strictly correct

beyond leading order, where their definition requires

singularity management choices such as MS.

Goals:

1. Test of QCD

2. Needed for Signal and Background calculations

at colliders

3. Measures a fundamental aspect of proton

structure — perhaps testable against moments

calculated on lattice. This is a particularly strong

motivation to exploring the spin dependence.
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Global QCD analysis
The dependence of the PDFs on Q is determined

perturbatively by QCD renormalization group

equations (DGLAP). Hence f(Q, x) can be

characterized by functions fa(Q0, x) at a fixed small

Q0, where a = g, u, ū, d, . . .. Those functions are

measured by a QCD global analysis: simultaneously

fitting a wide range of data from different

experiments at Q ≥ Q0.

Key points:

• Factorization Theorem – Short distance and long

distance are separable, PDFs are process

independent

• Asymptotic Freedom – Hard scattering is

perturbatively calculable

• DGLAP Evolution – Evolution in Q is

perturbatively calculable, so the functions to be

measured depend only on x.

If the hard-scattering data include polarization

information, it should be possible to extend the PDF

formalism to allow separate PDFs for polarization

states of each flavor.
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Kinematic region covered by data

Data with a wide range of scales are tied together by

the DGLAP renormalization group evolution

equation.

Consistency or inconsistency between the different

processes can be observed only by applying QCD to

tie them together in a global fit.

HERA II, Tevatron run II (W, Z production), and

LHC will dramatically extend the range and accuracy.
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CTEQ6.6 Global analysis
Input from Experiment:

• ∼ 2700 data points with Q > 2GeV from e, µ, ν

DIS; lepton pair production (DY); lepton

asymmetry in W production; high pT inclusive

jets; dimuon production in neutrino scattering;

HERA c and b production; HERA charged

current. αs(MZ) obtained from LEP.

Data cuts:

• Q2 > 4GeV2, W2 > 12GeV2

Input from Theory:

• NLO QCD evolution and hard scattering

Assumptions:

• Parametrize at Q0:

A0 xA1 (1− x)A2 eA3x (1 + A4x + A5x2)

• s = s̄ with A4 = A5 = 0;

• No intrinsic b or c

Method

• Construct effective χ2
global =

∑

i=expts

Wi χ2
i

• Minimize χ2
global to find “Best Fit” PDFs.

• Use χ2
global in neighborhood of the minimum to

define uncertainty limits.
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The PDF Paradigm
1. Parameterize x-dependence of each flavor at

fixed small Q0 (1.3GeV) (parameters A1, . . . , AN)

N ∼ 20

2. Compute PDFs fa(x, Q) at Q > Q0 by DGLAP

3. Compute cross sections for DIS(e,µ,ν),

Drell-Yan, Inclusive Jets,. . . by perturbation

theory (NLO or NNLO — LO is not good

enough, gives much worse χ2)

4. Compute “χ2” measure of agreement between

predictions and measurements:

χ2 =
∑

i

Wi

(
datai − theoryi

errori

)2

or generalizations to include correlated

systematic errors.

5. Minimize χ2 with respect to the shape

parameters {Ai} to find Best Fit PDFs

6. PDF Uncertainty Range is the region in {Ai}
space where χ2 is sufficiently close to minimum

that all experiments are fit tolerably well.

7. Weight factors Wi are needed to force the fit to

pay attention to small data sets.
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Typical results at Q = 2 and 100 GeV

• Valence quarks dominate for x → 1

• Gluon dominates for x → 0, especially at large Q
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Uncertainty Results (Gluon)

∆χ2 = 100 uncertainty band
Weight 50 for CDF Jets
Weight 50 for DØ Jets

Consistency check: Uncertainty estimated by ∆χ2 = 100 (for
1811 data points) is comparable to the difference between
“pulls” of nominally similar experiments.

(Area under curve is proportional to momentum fraction carried
by gluon — strongly constrained by DIS data. Hence the
envelope itself is not an allowed solution.)

Convergent Evolution: Uncertainty is smaller at large Q.
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Fractional uncertainty of gluon

mrst2001, mrst2002, mrst2003, mrst2004

• large uncertainty at large x

• Differences between MRST and CTEQ are

comparable to the estimated uncertainty—ironic

because original motive to study uncertainty

systematically was the danger that comparing

groups using same basic method would

underestimate the uncertainty!
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Part II

Some details of the implementation
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Including systematic errors in χ2

The simplest definition

χ2
0 =

N∑

i=1

(Di − Ti)
2

σ2
i





Di = data
Ti = theory
σi = “expt. error”

is optimal for random Gaussian errors,

Di = Ti + σiri with P (r) =
e−r2/2
√

2π
.

With systematic errors,

Di = Ti(a) + αirstat,i +
K∑

k=1

rkβki .

The fitting parameters are {aλ} (theoretical model)

and {rk} (corrections for systematic errors).

Published experimental errors:

• αi is the ‘standard deviation’ of the random

uncorrelated error.

• βki is the ‘standard deviation’ of the k th

(completely correlated!) systematic error on Di.
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To take into account the systematic errors, we define

χ′2(aλ, rk) =
N∑

i=1

(Di −
∑

k rkβki − Ti)
2

α2
i

+
∑

k

r2k ,

and minimize with respect to {rk}. The result is

r̂k =
∑

k′

(
A−1

)
kk′

Bk′, (systematic shift)

where

Akk′ = δkk′ +
N∑

i=1

βkiβk′i
α2

i

Bk =
N∑

i=1

βki (Di − Ti)

α2
i

.

The r̂k’s depend on the PDF model parameters {aλ}.
We can solve for them explicitly since the

dependence is quadratic, so they don’t add to the

number of parameters fed to Minuit.

We then minimize the remaining χ2(a) with respect

to the model parameters {aλ}.
• {aλ} determine fi(x, Q2

0).

• {r̂k} are are the optimal “corrections” for

systematic errors; i.e., systematic shifts to be

applied to the data points to bring the data from

different experiments into compatibility, within

the framework of the theoretical model.
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CTEQ6M fit to ZEUS data at low x
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ZEUS data
low x values

The data points include the estimated corrections

for systematic errors. That is to say, the central values

plotted have been shifted by an amount that is consistent with

the estimated systematic errors, where the systematic error

parameters are determined using other experiments via the

global fit.

The error bars are statistical errors only.
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Systematic Error treatment works
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(a) Histogram of residuals for the ZEUS data. The

curve is a Gaussian of width 1.
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(b) Similar comparison without corrections for

systematic errors on the data points.
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Minimizing χ2

The PDFs are determined by finding the fitting

parameters {Ai} that minimize χ2. This job is

nontrivial because

1. There are lots of parameters — currently 22.

2. To reduce the dependence on parametrization

assumptions, new parameters are included in the

fit until it is barely stable. Hence there are some

“nearly flat” directions, which leaves the χ2

surface quadratic only very close to the

minimum.

3. The parameters are highly correlated.

4. Evaluation of χ2 for a single choice of {Ai} takes

a few seconds, so efficiency is needed.

I have extended the classic Minuit to include an

iterative method that converges to obtain the

eigenvectors of the Hessian matrix.

• Other groups restrict the number of parameters

(10-15) to avoid convergence problems at the

cost of more dependence on the assumed

parametrization.

• When implementing the calculation, it is crucial

that χ2 is a smooth function of the parameters

— e.g., don’t use adaptive integration in the

theory calculations!
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Minimizing χ2 - ctd

In the neighborhood of the minimum, χ2 can be

approximated by a quadratic form

χ2 = χ2
0 +

∑

ij

Hij (Ai −A
(0)
i ) (Aj −A

(0)
j )

where the Hessian matrix H is the inverse of error

matrix.

After the iteration has converged, this is expressed in

a diagonal form by making use of the eigenvectors of

H:

χ2 = χ2
0 +

∑

i

z2
i

Ai = A
(0)
i +

∑

j

wij zj

In this way, χ2 is probed in each eigenvector

direction at the appropriate scale of ∆χ2. The

distances moved in parameter space range from very

small (“steep directions”, well-determined features)

to very large (“flat” directions).

The ratio of these distances corresponds to the

spectrum of eigenvalues of the Hessian, which span a

range of many orders of magnitude.
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Uncertainties from eigenvector sets

The uncertainty of PDFs can be characterized by a

collection of fits that are created by stepping away

from the minimum of χ2 along each eigenvector

direction of the local quadratic form (Hessian

matrix). The distance to go along each direction

must be such that the fit remains “acceptable”. In

CTEQ6.1, this was estimated to be ∆χ2 = 100 for

90% confidence. (1811 data points)

The current CTEQ6.6 fits have 22 free parameters

and hence 44 “Eigenvector uncertainty sets”.

The PDF uncertainty for any predicted quantity is

obtained by evaluating that quantity with each of

the eigenvector sets and then applying a simple

asymmetric formula: the square root of the sum of

the squares of the upward (downward) deviations

from the value given by the central fit gives the

estimated upper (lower) limit.
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Sources of uncertainty
• Experimental errors included in χ2

• Unknown experimental errors

• Higher-order QCD corrections + Large Logs

• Power Law QCD corrections (“higher twist”)

• Parametrization dependence

Essential Difficulties
• Experiments run until systematic errors dominate

⇒ remaining systematic errors involve guesswork

• Systematic errors of the theory and their

correlations are even harder to guess

• Some combinations are unconstrained, e.g. s−s̄

before NuTeV dimuon data

• No data at very small x (after Q > 2GeV,

W2 > 12GeV cuts)

• Major problem: experiments are not consistent

with each other. (Note, we would have been

easily mislead if we had only one of H1/Zeus or

CDF/DØ!)
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The basic uncertainty issue
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Suppose θ is measured in two different experiments.

What do you quote as Best Fit and Uncertainty?

(Maybe you expand the errors so the uncertainty

range covers both data sets. Or maybe you expand

it even more, using the difference between

experiments as a measure of the uncertainty.)

What happens to the Best Fit value when the

relative weight of the two experiments is varied?

That is the method we use to assess uncertainties of

the PDF Global Fit: we vary weights of the

experiments to estimate a range of acceptable ∆χ2

above the minimum value, in place of the classical

∆χ2 = 1.
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Complementary uncertainty methods
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• Hessian Matrix / Eigenvector Method:

Eigenvectors of error matrix yield 44 sets {S±i }
that are tolerably good fits to all of the data.

Get uncertainty of any prediction by sum of

squares of deviations; or more crudely just from

the extremes from the 44 sets.

• Lagrange Multiplier Method:

Track χ2 as function of F (e.g. σW ) by

minimizing χ2 + λF . Yields special-purpose PDFs

that give extremes of σW , or 〈y〉 for rapidity

distribution of W , or σ for tt̄ production; or . . .
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Outlook for Spin-dependent PDFs

• The standard PDF analysis already deals with

quantities that are very well determined, such as

u(x) at moderate x, along with quantities that

correspond to “flat” directions, such as g(x) at

large x. Hence no problem is anticipated in

extracting information on quantities like spin

dependence that are not strongly constrained.

• Rather than making a new full global fit that

includes all of the current unpolarized data set

used in the CTEQ fit, together with the polarized

data to constrain the spin-dependent degrees of

freedom, it may be possible to do a good job

much more easily by freezing the unpolarized

PDFs at their current forms in the CTEQ fit,

and just fitting the new helicity-dependent

functions to the polarized data.

22



What needs to be done?
The following issues need to be handled to extract

spin-dependent PDFs from the polarized data.

Perhaps some of them have already been solved by

Spin Experts.

1. What are the spin-dependent PDFs that one can

hope to extract? — is it just replacing each

unpolarized parton distribution (d, u, s, d̄, ū, s̄, g)

by a pair of functions with helicity parallel or

antiparallel to the proton helicity?

2. How should these functions be parametrized at

Q0? — models will be needed at first to keep

the number of new fitting parameters small

enough to be determinable by the data.

3. Is a NLO DGLAP evolution package available for

the polarized PDFs?

4. What data sets are or will be available? — can

we afford the luxury of cuts like Q2 > 4GeV2 to

suppress non-leading twist effects?

5. Are NLO calculations of the relevant

polarization-dependent observables available?

(Or may LO calculations be good enough for the

polarization?)
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