Parton Distribution Functions

e PDFs describe a “simple” 1-body aspect of the
nonperturbative quark and gluon structure of the
proton.

e PDFs are a necessary input to make predictions
for experiments at LHC.

e Because the PDFs are universal, they can be
measured by a QCD Global Analysis in which
many different types of experiment contribute.

The focus of this talk will be on details of the Global
Analysis procedure that should be examined carefully
during the workshop. Because of the short time
available, current results on the PDFs themselves
will not be discussed.



The PDF fitting paradigm

. Parameterize the z-dependence of each flavor at
a fixed small Qg

. Compute PDFs fqo(x,Qp) at all Q > Qg by
DGLAP

. Compute cross sections for DIS(e,u,v), Drell-Yan,
Inclusive Jets,. .. using QCD perturbation theory

. Compute “X2” measure of agreement between

predictions and measurements:

x2=z<

()

data; — theory; 2
error;

. Varying the shape parameters {4;} to minimize
2 yields Best Fit PDFs: CTEQ6.1, MRST,. ..

. Define a PDF Uncertainty Range as the region in
{A;} space for which x? is sufficiently close to its
minimum value.

. Make results on Best Fit and representative
uncertainty sets, available to consumers.



Parametrization at Qg

We parameterize the xz-dependence of each flavor at
a fixed small Qp:

zfa(x,Qo) = Ag a1 (1 — z)A2e43%(1 4 eag) s

This form was chosen as a simple generalization of
the traditional Agz41 (1 — z)42 parametrization,
which in turn is based on Regge and quark counting
rule ideas. The generalization consists of adding a
1:1 Padé approximation:
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We use Qg = 1.3 GeV and parametrize g, uy, do,
d+u, d/u, s+ 5, (s—35)/(s+5). Some of the ‘“shape
parameters” {A;} are frozen at arbitrary values to
leave ~ 20 free fitting parameters. More free
parameters would lead to unstable fits even with the
extensions to Minuit that will be discussed below.
Issues for study:

e Does parametrization dependence influence any

of the predictions of interest?

e Other functional forms?

e Negative gluon distribution at low Q7

e Intrinsic b or c?



PDF Evolution in @)

The parton distributions fq(z,Q) at all Q > Qg are
derived from the parametrized f,(x, Q) using the
DGLAP renormalization group evolution equations.
Issue for study: Is Non-DGLAP behavior important
at small x7

One approach, already started by MRST, is to
examine the consistency of small-x data with the
rest of the global fit.

Another approach to measuring the internal
consistency will be described at the end of this talk.



Compute Cross Sections in QCD

Issue for study: Importance and feasibility of
upgrading to NNLO.

(For charm production, just upgrading to full NLO is
still in progress.)



v2 with systematic errors

Known experimental systematic errors can be
included in a straightforward way. The systematic
error parameters are determined as part of the fitting
process.

The traditional definition
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With systematic errors,
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The fitting parameters are {A;} (theoretical model) and {r;}
(corrections for systematic errors).



To take into account the systematic errors, we define
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and minimize with respect to {r;}. The result is
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The 7,'s depend on the PDF model parameters {A,}. We can
solve for them explicitly since the dependence is quadratic.

{rr} are are the optimal corrections for systematic errors:
systematic shifts to be applied to the data points to bring the
data from different experiments into compatibility within the
framework of the theoretical model.



Minimize x2
To determine the PDFs, the fitting parameters {A4;}
should minimize x2. This minimization is nontrivial
because
1. there are lots of parameters
2. new parameters are included in the fit until it is
pbarely stable, to reduce the dependence on
parametrization assumptions. Hence the X2
surface is quadratic only very close to the
minimum.
. the parameters are highly correlated
4. evaluation of x2 for a single choice of {4;} takes
a several seconds.

W

I have made some extensions to the classic Minuit to
make it more effective in this situation.



Minimize y? - ctd

In the neighborhood of the minimum, x2 can be
approximated by a quadratic form

=23+ Hij (A — A (4 - A§O))
]

where the Hessian matrix H is the inverse of error
matrix. It is convenient to express this in a diagonal
form by making use of the eigenvectors of H:

X2 =x5+ 22
1
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A=A + 3wy
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If the {AZ(O)} are not quite at the minimum, there are

also linear terms in x2 which can easily be used to
improve the estimate of the minimum. I use an
iterative procedure to home in on the minimum and
to achieve the diagonal form for x2. By the end of
the iteration, x2 is probed in all directions at the
appropriate scale of Ay?2.



Eigenvalues of distance

The diagonal form for X2 IS not unique, because a
further arbitrary orthogonal transformation of the z;
coordinates is allowed. My usual method is to use
this freedom to diagonalize the total distance moved
in the original shape parameter space:
S (A - A2 =3 a2 22

1

1
The distances d; turn out to range from ~ 3 (“flat
directions” in which x2 rises slowly) to ~ 103
(“steep directions” in which x? rises rapidly.) This
difference corresponds to a 10’ : 1 range in the
eigenvalues (1/d?) of the Hessian matrix, which is
another way to see why the minimization is difficult.
Issue for study: The code I use for finding the
eigenvector directions and for exploring x2 along
those directions while taking account of
non-quadratic behavior along the flat directions
could be made available—perhaps as a formal
addition to the Minuit command set.



PDF Uncertainty ranges

The Uncertainty Range of the PDFs can be defined
as the region in {4;} space for which x?
sufficiently close to its minimum value: x? < x3 + 72.

In an ideal statistical world, the allowed range would
be Ax2<1. A variety of approaches over the last
several years, based on studying conflicts between
the data sets that make up the global fit, have
shown that the empirical uncertainty range for
present day PDFs is more like Ax?2 < 50.

The essential reason for this is a familiar one in
phenomenology. Suppose the quantity 6 is measured
by two different experiments, or extracted using two
different approximations to the True Theory.
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What would you quote as the Best Fit and the
Uncertainty? (Perhaps you would scale up the errors
so the uncertainty range covers both data sets; or
perhaps you would expand the uncertainty range
even more, by taking the difference between these

sets as a measure of the uncertainty.)

The discrepancies in the global fit are not as obvious
as this because they only appear when different
types of experiments are combined. But they can be
studied by varying relative weights assigned to
subsets of the data in the global fit; or by my new
Hessian technique.

Another approach is the Statistical Bootstrap
Method, in which you assign random weights to the
experiments and use the variation in best fits as the
measure of uncertainty.



Uncertainty Example: counting
valence quarks

The number of valence up and down quarks is
normally constrained in our global fits to the
Standard Model values N, =2, N; =1, where

1 —_
N, = /O (w(z) — a(z)] da

Ny = [ 1) — d@)) da

If Ny and Ny are made free parameters, the Best Fit
has N, = 2.08 and N; = 1.11, with “improvement”
in x2 of 4.0.

This is to be interpreted as a nice demonstration of
consistency with the standard model—not as a
(~ 90%-confidence) anomaly.



Uncertainty example: Light Gluino
(Work in progress with Pavel Nadolsky, Fred Olness,

Ed Berger.)

Hypothesizing a gluino of mass ~ 10 GeV can
improve the global fit by ~ 25 units in x2.

You may wish to take this as an intriguing hint of
possible New Physics. But you would be crazy to
consult a statistical table of X2 probabilities and
declare it inescapable.
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Dissemination of results

Representative PDF sets that explore the allowed
Ax? <T? region can be generated by the “Lagrange
Multiplier” method (wherein a specific quantity of
interest such as the predicted oniggs IS Minimized or
maximized.

Alternatively a collection of PDF sets can be
obtained from the *“Hessian” method. An example
are the published 40 PDF sets of CTEQ®6, which are
defined by Ax?2 = 100 along the eigenvector
directions of the error matrix.

LLarge numbers of PDF sets that are of interest to
users can be made available conveniently via the
LHAPDF accord.

Issue for study:. Considerations of convenience
and/or speed in this protocol?



Hessian Method to Study consistency of the

global fit

(Work in progress)

Partition the data into two subsets:

2 2 2
X~ =x7 + X71

where subset I might be, for example,

any single experiment

all of the jet experiments

all of the low-@Q data points (to look for higher
twist effects)

all of the low-x data points (to look for BFKL
effects)

all experiments that use deuteron corrections



Using the freedom to make an additional orthogonal
transformation after the total y2 has been
diagonalized, it is always possible to write

X2 =xg + D F
)
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By simple algebra, this can be written as
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= z; = p; £ q;

In this way we can answer the question “How many
parameters are significantly determined by any given
data set?”



Similarly,
X7r=x5—A— ZBiZz' + Z(l —¢;)zf
1 1

can be written as

2
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By comparing this with the result z;, = p; £ g; from

subset I, we can awswer the question “How

consistent are the data points I with the remainder

II of the global fit?”

We just need to see if (p; — ¢;) + \/r,? + 52) is
consistent with O.



