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CTEQ Global analysisExperimental Input:
• Inlude all relevant data on equal footing:

≈ 1400 points with Q > 2GeV from e, µ, ν DIS;lepton pair prodution (DY); lepton asymmetryin W prodution; high pT inlusive jets; αs(MZ)from LEPTheoretial Input:
• NLO QCD evolution and hard sattering
• Parametrize: A0 xA1 (1− x)A2 (1 +A3xA4) at Q0
• s = �s = 0.4 (�u+ �d)/2 at Q0; no intrinsi b or cE�etive χ2global = ∑
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• Normalization fator Nn is prototype for inludingorrelated systemati errors { moving toward fullerror orrelation matrix where available
• Find Best Fit PDFs by minimizing with respetto the parameters.
• Estimate unertainty as region of parameterspae where χ2 < χ2(BestFit) + T2 with T ≈ 10



Map of kinemati region overed by data

A wide variety of data is tied together by the Theoryof Evolution, namely DGLAP.Consisteny, or lak thereof, between experimentsan be observed only in the ontext of a global �t.



Overview of MSU unertainty studies
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• Lagrange Multiplier Method: Trae χ2 asfuntion of F (e.g. σW ) by minimizing χ2+ λF .Yields speial-purpose PDFs that give extremesof F ; e.g. extremes of σW , or 〈y〉 for rapiditydistribution of W , or σ for t�t prodution; or
σt�t(√s = 14TeV)/σt�t(√s = 2TeV), or MW massmeasurement error,. . .

• Hessian Matrix Method: use eigenvetors oferror matrix. Yields ≈ 32 sets {S±
i } that aredisplaed \up" or \down" by �χ2 = 100 fromthe best �t. Get error by sum of squares andonstrut extreme PDFs for any problem ofinterest. More simply, an just look at extremesfrom the 32 sets { Big improvement over justlooking at extremes from obsolete PDFs!



Hessian (Error Matrix) methodClassial error formulae�χ2 = ∑
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∂ajwhere the Hessian matrix H is inverse of errormatrix. Diret appliation of this formula failsbeause of extreme di�erenes in variation of χ2 fordi�erent diretions in the spae of �tting parameters(\steep" and \at" diretions), as revealed by theeigenvalues of H. (It is well known that the errormatrix omputed by Minuit is not useful in omplexmultiparameter appliations.)This problem is solved by an iterative proedure that�nds and resales the eigenvetors of H, leading to adiagonal form �χ2 = ∑
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The iterative proedure is available in FORTRAN athttp://www.pa.msu.edu/∼pumplin/iterate/It is under disussion to beome a new option inMinuit.
Eigenvalues of Hessian matrix



Region of aeptable global �ts
χ2 − χ2(BestFit) < T2 with T ≈ 10− 15i.e., �χ2 < 100− 200. Would have T = 3 for \3σlimit", if Gaussian error treatment were OK, whih itis NOT beause of unknown orrelated errors intheory and experiments.

T is determined by onsisteny requirements: theallowed variations from the Best Fit must inludevariations as large as those reated when eah dataset is added to the analysis. (Observe that whenseveral of the data sets are added to the �t, the χ2for those already inluded inreases by ≈ 20.)Systemati method (Collins & Pumplin): explorevariation of χ2 for Expt i vs. χ2 for all others asfuntion of weight assigned to Expt i.Another way to estimate T : Look at quality of �t toeah experiment as a funtion of physial quantitiesof interest suh as σW . �χ2 ∼ 100 may be almostinvisible in eyeball omparisons to data | e.g.,inreasing all disrepanies by 5% above their valuesin the best �t makes �χ2 = 125. Or it may beonentrated in one or two experiments and be quitenotieable.



Measures of onsisteny in CTEQ5Overall �t looks \Normal": urve is Gaussian
dP/dx ∝ exp(−x2/2) with no adjustable parameters.

But individual data sets are not so Gaussian...Experiment N χ2n/N (χ2n − N)/√2NBCDMS H2 168 0.87 −1.2BCDMS D2 156 1.42 3.7H1 F2 96 172 0.63 −3.4Zeus F2 94 186 1.34 3.3NMC H2 104 1.04 0.3NMC D2/H2 123 0.90 −0.8NMC D2/H2 13 0.99 0.0CCFR F2 87 0.85 −1.0CCFR F3 87 0.38 −4.1E605 µ+µ− 119 0.77 1.8NA51 1 0.44 −0.4CDF W asym 11 0.78 −0.5E866 11 0.45 −1.3D0 jets 24 0.95 0.2CDF jets 33 1.65 2.6Total 1295 0.96 −0.9



New ways to measure onsisteny of �t(Work in progress with John Collins)Key idea: In addition to theHypothesis-testing riterion �χ2 ∼
√2Nwe use the strongerParameter-�tting riterion �χ2 ∼ 1

The parameters here are relative weights assigned tovarious experiments, or to results obtained usingvarious experimental methods. Examples:
• Plot minimum χ2i vs. χ2tot − χ2i , where χ2i is oneof the experiments, or all data on nulei, or alldata at low Q2,. . .or
• Plot both as funtion of Lagrange multiplier uwhere (1− u)χ2i + (1+ u)(χ2tot − χ2i ) is thequantity minimized.Can obtain quantitative results by �tting to a modelwith a single ommon parameter p:

χ2i = A + (

psin θ

)2 ⇒ p = 0± sin θ

χ2not i = B + (

p−Sos θ

)2 ⇒ p = S ± os θThese di�er by S ±1, i.e., by S \standard deviations"



NMC D2/H2  
NMC D2/H2

S = 2.6

BCDMS D2

BCDMS D2
S = 7.6

Fits to 8 of the experiments in the CTEQ5 analysisExpt 1 2 3 4 5 6 7 8
S 2.7 3.3 3.3 4.2 5.3 7.6 7.4 8.3tanφ 0.56 0.54 0.99 0.86 0.71 1.14 0.65 0.39



Lagrange Multiplier results

(Assumes leptoni branhing fration 0.1056)
Blak points from Giele et al. hep-ph/0104053CTEQ5 point from hep-ph/0101032MRST point from Thorne's talk at FNAL(resolve disagreement with Giele?)



σW vs. σZ orrelation at 1.8TeV

CTEQ5 predition is the ellipse, obtained using twoLagrange multipliers or by the Hessian method.Data points (whih would also be representedbetter by ellipses beause of strong experimentalorrelation!) are D�, CDF, and CDF using sameexperimental luminosity estimate as D�.



W rapidity distributionsOur methods allow us to alulate the extremepreditions due to PDF unertainty for whateverquantity is of experimental interest.For example, extremes of σW , 〈y〉, 〈y2〉 for Wprodution at FNAL:

Same urves after subtrating entral values. . .



Agreement between Lagrange and HessianResults for maximum σW , 〈y〉, 〈y2〉 alulated usingboth methods demonstrate that the approximationsmade in the Hessian method are OK.

Random PDFs with �χ2 = 100 (blak urves) donot eÆiently generate the extreme distributions. . .



Hessian results: Unertainty of gluon

Q=100 GeV

Q=2GeV

Gluon distribution

Shaded region shows the range of unertainties forthe gluon distribution in CTEQ5. It is the envelopeof distributions like the red and blue urves thatminimize or maximize G(x) at a spei� value of x.The envelope itself is NOT a possible PDF!
Gluon uncertainty at Q=10GeV



Unertainty of u-quark

Frational unertainty is muh smaller than for gluon(note sale is di�erent from gluon plot)
Up quark uncertainty at Q=10GeV



New gluon distributionsPlot x5/3G(x, Q) vs. x1/3 so area shows ontributionto momentum sum rule. Q = 2GeV , Q = 100GeV

With new H1 and D0 data \HJ solution"Notes: G(x) has beome somewhat larger, but within old errors.\HJ" has χ2 lower by 75 { parametrization dependene orinteresting physis?New Zeus data and orrelation matrix errors not yet inluded.



Unertainty in parton Luminosities
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Interfae to Monte CarlosMethods desribed here demand inreased exibilityfrom the Monte Carlo simulations, whih must bemade to easily aept hanges in the PDF set.Have now { or will generate { PDF sets that aretailored to give the extremes of spei� quantities,e.g., minimum and maximum ross setions orextreme rapidity distributions for W , or Z, or Higgs,or high-pt jets.Also have ≈ 32 PDF sets from the Hessian Method,whih have �χ2 = 100 in the diretions of theeigenvetors of the error matrix.



Ation items for WORKshop
• The most natural interfae to the Monte Carloswould be for them to all a user-suppliedfuntion that returns the PDFs as a funtion of xand avor at the non-perturbative sale

Q0 = 1GeV, whih is the value urrently used byPDF analysis groups.
• If this is done, the DGLAP evolution ode mustbe arefully standardized, beause hoies ofpower orretions and grid points an potentiallya�et the evolution over the very low Q region,and hene a�et the PDFs at all Q.
• The Hessian method requires alulations withurrently 32 di�erent PDF sets (up and downalong 16 eigenvetor diretions). Giele's methodrequires still more PDFs. It should be possible torun a Monte Carlo simulation just one, keepingtrak of the PDF values that lead to eahsimulated event. Then results fordi�erent-but-similar PDFs ould be found byreweighting the generated events.


