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CTEQ Global analysis

Experimental Input:
e Include all relevant data on equal footing:
~ 1400 points with @ > 2 GeV from e, u, v DIS;
lepton pair production (DY); lepton asymmetry
in W production; high pp inclusive jets; as(My)
from LEP

Theoretical Input:
e NLO QCD evolution and hard scattering
e Parametrize: Agz31 (1 — 2)42 (1 4+ Azz44) at Qg
e s=5=0.4(u+d)/2 at Qg; no intrinsic b or ¢

Effective Xélobal = Y x2 summed over experiments:

5 (1=Nu\? Np Dy g — T\ 2

e Normalization factor N, is prototype for including
correlated systematic errors — moving toward full
error correlation matrix where available

e Find Best Fit PDFs by minimizing with respect
to the parameters.

e Estimate uncertainty as region of parameter
space where y2 < y2(BestFit) + 72 with T ~ 10




Map of kinematic region covered by data
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A wide variety of data is tied together by the Theory
of Evolution, namely DGLAP.

Consistency, or lack thereof, between experiments
can be observed only in the context of a global fit.



Overview of MSU uncertainty studies

2-dim illustration of the 4
neighborhood of the global Ly
minimum in the 16-dim parton

parameter space ...

v2 - contours
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e Lagrange Multiplier Method:  Trace x2 as
function of F (e.g. oy) by minimizing x2 + \F.
Yields special-purpose PDFs that give extremes
of F'; e.g. extremes of oy, or (y) for rapidity
distribution of W, or o for tt production; or
oi7(v/s = 14TeV)/oz7(y/s = 2TeV), or My, mass
measurement error,. ..

e Hessian Matrix Method: use eigenvectors of
error matrix. Yields ~ 32 sets {Sz-i} that are
displaced “up” or “down’” by AX2 — 100 from
the best fit. Get error by sum of squares and
construct extreme PDFs for any problem of
interest. More simply, can just look at extremes
from the 32 sets — Big improvement over just
looking at extremes from obsolete PDFs!



Hessian (Error Matrix) method

Classical error formulae
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where the Hessian matrix H is inverse of error
matrix. Direct application of this formula fails
because of extreme differences in variation of y?2 for
different directions in the space of fitting parameters
(“steep” and “flat” directions), as revealed by the
eigenvalues of H. (It is well known that the error
matrix computed by Minuit is not useful in complex
multiparameter applications.)

This problem is solved by an iterative procedure that
finds and rescales the eigenvectors of H, leading to a
diagonal form

— 322
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(ar)? =3 (F(s) - FsO)

i
where Si(_l') and SiH') are PDF sets that are displaced
along the eigenvector directions.



The iterative procedure is available in FORTRAN at
http://www.pa.msu.edu/~pumplin/iterate/

It is under discussion to become a new option in
Minuit.
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Region of acceptable global fits

2 — x2(BestFit) < T2 with 7'~ 10 — 15
i.e., Ax?2 < 100 — 200. Would have T'= 3 for “3¢
limit", if Gaussian error treatment were OK, which it
iIs NOT because of unknown correlated errors in
theory and experiments.

T is determined by consistency requirements: the
allowed variations from the Best Fit must include
variations as large as those created when each data
set is added to the analysis. (Observe that when
several of the data sets are added to the fit, the 2
for those already included increases by = 20.)

Systematic method (Collins & Pumplin): explore
variation of 2 for Expt i vs. 2 for all others as
function of weight assigned to Expt =.

Another way to estimate 7. Look at quality of fit to
each experiment as a function of physical quantities
of interest such as oyp. Ax?2 ~ 100 may be almost
invisible in eyeball comparisons to data — e.g.,
increasing all discrepancies by 5% above their values
in the best fit makes Ay?2 = 125. Or it may be
concentrated in one or two experiments and be quite
noticeable.



Measures of consistency in CTEQS

Overall fit looks “Normal’ : curve is Gaussian
dP/dx x exp(—xz2/2) with no adjustable parameters.
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But individual data sets are not so Gaussian...

Experiment N x2/N (x2—N)/Vv2N
BCDMS H2 168 0.87 —1.2
BCDMS D2 156 1.42 3.7
H1 F2 96 172 0.63 —3.4
Zeus F2 94 186 1.34 3.3
NMC H2 104 1.04 0.3
NMC D2/H2 123  0.90 —0.8
NMC D2/H2 13 0.99 0.0
CCFR F2 87 0.85 —1.0
CCFR F3 87 0.38 —4.1
E605 utu~ 119 0.77 1.8
NAS51 1 0.44 —0.4
CDF W asym 11 0.78 —0.5
E866 11  0.45 —1.3
DO jets 24  0.95 0.2
CDF jets 33 1.65 2.6
Total 1295 0.96 —0.9




New ways to measure consistency of fit
(Work in progress with John Collins)

Key idea: In addition to the
Hypothesis-testing criterion Ay?2 ~ /2N
we use the stronger
Parameter-fitting criterion Ax? ~ 1

The parameters here are relative weights assigned to
various experiments, or to results obtained using
various experimental methods. Examples:
e Plot minimum x? vs. xi. — X2, Where x? is one
of the experiments, or all data on nuclei, or all
data at low Q2,. ..

or
e Plot both as function of Lagrange multiplier «

where (1 — u)XZQ + (1 + u)(X’%ot — XZQ) is the
quantity minimized.

Can obtain quantitative results by fitting to a model

with a single common parameter p:
2 .
2=A+ (gfy)" = p=0%sing
2 _ p—S\? _
Xnot i = B + (—cose) = p=S5=*cosh

These differ by S+ 1, i.e., by S ‘“standard deviations”
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Lagrange Multiplier results

\ W production at Tevatron /
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(Assumes leptonic branching fraction 0.1056)

Black points from Giele et al. hep-ph/0104053
CTEQS5 point from hep-ph/0101032

MRST point from Thorne’s talk at FNAL

(resolve disagreement with Giele?)



oy VS. oz correlation at 1.8 TeV
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CTEQS prediction is the ellipse, obtained using two
Lagrange multipliers or by the Hessian method.

Data points (which would also be represented
better by ellipses because of strong experimental
correlation!) are D@, CDF, and CDF using same
experimental luminosity estimate as DQ.



W rapidity distributions

Our methods allow us to calculate the extreme
predictions due to PDF uncertainty for whatever

quantity is of experimental interest.

For example, extremes of oy, (y), (y2) for W
production at FNAL:
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Agreement between Lagrange and Hessian

Results for maximum oy, (y), (y2) calculated using
both methods demonstrate that the approximations
made in the Hessian method are OK.
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Random PDFs with Ax2 = 100 (black curves) do
not efficiently generate the extreme distributions. ..
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Hessian results: Uncertainty of gluon
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Shaded region shows the range of uncertainties for
the gluon distribution in CTEQS5. It is the envelope
of distributions like the red and blue curves that
minimize or maximize G(x) at a specific value of x.
The envelope itself is NOT a possible PDF!
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Uncertainty of u-quark
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Fractional uncertainty is much smaller than for gluon
(note scale is different from gluon plot)
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New dgluon distributions

Plot 25/3 G(z,Q) vs. z1/3 so area shows contribution
to momentum sum rule. Q =2 GeV , Q = 100 GeV
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With new H1 and DO data “HJ solution”

Notes: G(xz) has become somewhat larger, but within old errors.
“HJ" has x? lower by 75 — parametrization dependence or
interesting physics?

New Zeus data and correlation matrix errors not yet included.



Uncertainty in parton Luminosities
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Interface to Monte Carlos

Methods described here demand increased flexibility
from the Monte Carlo simulations, which must be
made to easily accept changes in the PDF set.

Have now — or will generate — PDF sets that are
tailored to give the extremes of specific quantities,
e.g., minimum and maximum Cross sections or
extreme rapidity distributions for W, or Z, or Higgs,
or high-pt jets.

Also have =~ 32 PDF sets from the Hessian Method,
which have Ax? = 100 in the directions of the
eigenvectors of the error matrix.



Action items for WORKshop

e T he most natural interface to the Monte Carlos
would be for them to call a user-supplied
function that returns the PDFs as a function of X
and flavor at the non-perturbative scale
Qo = 1 GeV, which is the value currently used by
PDF analysis groups.

e If this is done, the DGLAP evolution code must
be carefully standardized, because choices of
power corrections and grid points can potentially
affect the evolution over the very low @ region,
and hence affect the PDFs at all Q.

e [ he Hessian method requires calculations with
currently 32 different PDF sets (up and down
along 16 eigenvector directions). Giele's method
requires still more PDFs. It should be possible to
run a Monte Carlo simulation just once, keeping
track of the PDF values that lead to each
simulated event. Then results for
different-but-similar PDFs could be found by
reweighting the generated events.



