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High energy hadrons interact through their quark and
gluon constituents, which Feynman collectively called
partons. Hadronic interactions become weak at short
distances because of the asymptotic freedom property
of Quantum Chromodynamics, allowing perturbation
theory to be applied to a rich variety of experiments.

The nonperturbative nature of the proton is character-
ized by Parton Distribution Functions of momentum
scale ) and light-cone momentum fraction x. Evolu-
tion in @ is determined perturbatively by QCD renor-
malization group equations, so the non-perturbative
physics is specified by functions of x at a fixed Qp.
Those functions are to be measured and applied.

e Introduction to PDFs
e Including correlated experimental errors
e Estimating uncertainties
— Eigenvector PDF sets
— Lagrange multipliers
— reweighting experiments
— Bootstrap methods
e Applications
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Global QCD analysis

e Extract universal non-perturbative (large distance
scale) features of proton or nucleus from a large
variety of experiments with perturbatively
calculable (short distance) hard scattering using
— Factorization
— Asymptotic Freedom

(Hard scattering is perturbative)
— Renormalization Group Evolution in scale @
(PDFs characterize by functions of = at Qg)

e Test consistency of QCD — globally and with
individual experiments

e Make results available in convenient form for
applications

e Explore the possible range of uncertainties

Factorization Theorem
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Experimental Parton Distributions:
Input Nonperturbative parametrization at QO

DGLAP Evolution to Q
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Kinematic region covered by data
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Data with a wide range of scales are tied together by
the DGLAP renormalization group evolution
equation.

Consistency or inconsistency between the different
processes can be observed only by applying QCD to
tie them together in a global fit.

All experiments that use hadrons in the initial state
— RHIC, Tevatron, LHC, and non-accelerator
experiments — require the parton distributions for
their analysis.



CTEQ6 Global analysis

Input from Experiment:

e ~ 2000 data points with Q > 2GeV from e, u, v
DIS; lepton pair production (DY); lepton
asymmetry in W production; high pp inclusive
jets; as(My) from LEP

Input from Theory:
e NLO QCD evolution and hard scattering
e Parametrize at Qp:
Agz1 (1 — 2)A2e43%(1 4 Ayz)45
e s=5=0.4(u+d)/2 at Qp; no intrinsic b or c

Construct effective Xglobal > _expts Xn'
° Xglobal mcludes the known systematic errors
e Minimizing Xglobal yields “Best Fit" PDFs.
e Variation of Xglobal in neighborhood of the
minimum defines uncertainty limits.
e Estimate uncertainty as region of parameter
space where 2 < y2(BestFit) + 72 with T = 10.

(Quite different from Gaussian statistics because of
unknown correlated systematic errors in theory and
experiments — as measured by inconsistency between
experiments).



Parton distributions at Q = 2 and 100 GeV
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e Valence quarks dominate for x — 1
e Gluon dominates for x — 0, especially at large @
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Comment on Parametrization
For dyg,1, wyal, OF g, We use
zf(x,Qo) = Agat (1 — 2)42 737 (1 4 e4z) s
This corresponds to

d A A ca + cax
“In(zf)="1 -2 4= 1™
dx x 1l —=x 14 cgx

i.e., we add a 1:1 Padé form to the singular terms of

the traditional Agz41 (1 — z)42 parametrization.

A sufficiently flexible parametrization is important;
but for convergence, there must not be too many
“flat directions.” For that reason, some of the
parameters are frozen for some flavors.

(To measure a set of continuous PDF functions at Qg on the
basis of a finite set of data points would appear to be an
ill-posed mathematical problem. However, this difficulty is not
SO severe as might be expected since the actual predictions of
interest that are based on the PDFs are discrete quantities. In
particular, fine-scale structure in x in the PDFs at Qo tend to
be smoothed out by evolution in Q. They correspond to flat
directions in x? space, so they are not accurately measured; but
they have little effect on the applications of interest.)



2 and Systematic Errors

The simplest definition

N 2 D; = data
D. _ T 7
X%ZZ( 122) T; = theory
i—1 gi o; = ‘“expt.error”
is optimal for random Gaussian errors,
6—7“2/2

D, ="1T; 4+ o;r; with P(T) = .
V21

With systematic errors,

K
D; = Ti(a) + airstat; + Z 71 Bki -

k=1

The fitting parameters are {a,} (theoretical model) and {r;}
(corrections for systematic errors).

Published experimental errors:

e «; IS the ‘standard deviation’ of the random uncorrelated
error.

e (3.; is the ‘standard deviation’ of the kth (completely
correlated!) systematic error on D;.



To take into account the systematic errors, we define

~ (D - i —T;)°
X?(ax, ) = Z ( 2 Tﬁﬁk ) + Z %
k

%
=1 4

and minimize with respect to {r;}. The result is
TR = Z (A_l)kk, By, (systematic shift)
k/
where

N
Agy = 5kkf+zﬁk£k”
i=1

?

N

_ Bri (D; — T7)

B, = E 3 .
i=1 i

The 7,'s depend on the PDF model parameters {a)}. We can
solve for them explicitly since the dependence is quadratic.

We then minimize the remaining x?(a) with respect to the
model parameters {a)}.

e {a,} determine fi(x,Q3).

e {7} are are the optimal “corrections” for systematic
errors; i.e., systematic shifts to be applied to the data
points to bring the data from different experiments into
compatibility, within the framework of the theoretical
model.
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Comparison of CTEQ6M fit to data
sets with correlated systematic errors

data set Ne X2 x2/Ne
BCDMS p 339 377.6 1.114
BCDMS d 261 279.7 1.114

H1la 104 98.59 0.948
H1lb 126 129.1 1.024
ZEUS 229 262.6 1.147

NMC F2p 201 304.9 1.b517
NMC F2d/p | 123 111.8 0.909
DQ jet 90 69.0 0.766
CDF jet 33 48.57 1.472
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CTEQ6M fit to ZEUS data at low =z

2.5}

X=0.000161 ZEUS data
x=0.000253 low x values
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Q* [GeVv?]
The data points include the estimated corrections
for systematic errors. That is to say, the central values
plotted have been shifted by an amount that is consistent with
the estimated systematic errors, where the systematic error

parameters are determined using other experiments via the
global fit.

The error bars are statistical errors only.
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(b) A similar comparison but without the corrections
for systematic errors on the data points.
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CDF inclusive jet cross section
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These inclusive jet cross section measurements
provided the first major stimulus to the study of
PDF uncertainties — in particular, the uncertainties
associated with choices made in the form of
parametrizations at Qp.
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Values of the fitted systematic error parameters for
CDF Inclusive jet cross section:

Tk
—0.511
0.816
0.022
1.347
—1.307
0.089
—0.222

~NOoO O~ WN P

All parameters are <1 as they should be.
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O~ H

Sources of uncertainty:
Experimental errors included in y2
Unknown experimental errors
Parametrization dependence
Higher-order corrections & Large Logarithms
Power Law corrections ( “higher twist")

Fundamental difficulties:

. Good experiments run until systematic errors

dominate: the magnitude of remaining
systematic errors involves guesswork.

. Systematic errors of the theory and their

correlations are even harder to guess.

. Quasi—ill-posed problem: determine continuous

functions from discrete data set

. Some combinations of variables are

unconstrained, e.g., s — s before NuTeV data.
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MSU/CTEQ uncertainty methods

2-dim illustration of the 4
neighborhood of the global Ly
minimum in the 16-dim parton

parameter space ...

¥2 - contours

» a;

e Hessian Matrix Method: eigenvectors of
error matrix yield 40 sets {Sii} that are displaced
“up” or “down” by Ax2 = 100 from the best fit.
Get error by sum of squares and construct
extreme PDFs for any observable; or simply look
at extremes from the 40 sets.

e Lagrange Multiplier Method:  Track x2 as
function of F (e.g. oy) by minimizing x2 4+ \F.
Yields special-purpose PDFs that give extremes
of oy, or (y) for rapidity distribution of W, or o
for tt production; or
oi7(v/s = 14TeV) /o7 (/s =2TeV), or My, mass
measurement error,. ..
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Hessian (Error Matrix) method

Classical error formulae

A2 = Y (a; — alP)(H)(a; — alD)
]

OF

OF 1) OF
(9aj

AF)2 = Ay?
(AF) xzaai

¥
Hessian matrix H is inverse of error matrix.

H 1),

Direct application fails because of extreme
differences in variation of y2 for different directions
in the space of fitting parameters (“steep” and
“flat” directions), as shown by a huge range of
eigenvalues of H: _
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Convergence problems in the minimization are solved
by an iterative method that finds and rescales the
eigenvectors of H, leading to a diagonal form

AX2 = ZzZQ
1

(ar)? =Y (F(s) - rsO)

7

where S,f"') and S,L-H') are PDF sets that are displaced
along the eigenvector directions. The iterative
procedure is available in FORTRAN at

http://www.pa.msu.edu/~pumplin/iterate/
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New ways to measure consistency of fit
(Work in progress with John Collins)

Key idea: In addition to the
Hypothesis-testing criterion Ax?2 ~ v2N
we want to use the stronger
Parameter-fitting criterion Ax?2 ~ 1

The parameters here are relative weights assigned to
various experiments, or to results obtained using
various experimental methods. Examples:
e Plot minimum x? vs. xi.; — X2, where x? is one
of the experiments, or all data on nuclei, or all
data at low Q2,. ..

or
e Plot both as function of Lagrange multiplier «

where (1 — u)xz2 + (14 u)(x%ot — XZQ) is the
quantity minimized.

Can obtain quantitative results by fitting to a model
with a single common parameter p:
2=A+ (g4)° = p=O0=sin
Xoot: = B + (C}:?O;S%)Q = p=S+cosh
These differ by S+1, i.e., by S "standard deviations”

20
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Uncertainty of Gluon distribution
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Consistency check: Estimated uncertainty is comparable to the
difference between nominally similar experiments.

Area under curve is proportional to momentum fraction carried
by gluon — strongly constrained by DIS data. Hence the
envelope itself is not an allowed solution.
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Convergent Evolution: Uncertainty smaller at large Q
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Statistical Bootstrap method

Generate random weights for each of the 16
experiments in global fit by 44 = e~Wi. Find best
fit for each set of weights. Repeat 200 times and
take the central 90 % at each x as the measure of
uncertainty range. Shows a sizable uncertainty with
no ad hoc assumption such as Ay2 = 100.

0.4n|1||| T | T T | T T T T T III_
Q = 3.2 GeV.

0.3
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x5/3G(x,Q)

0.1
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Traditional statistical bootstrap uses integer weights O — 16
defined by random selection. This continuum method is similar
but avoids zero weights. Traditional method:

e Efron and Tibshirani, An Introduction to the Bootstrap,
Chapman & Hall 1993.

e M. Chernick, Bootstrap Methods: A Practitioner’s Guide,
John Wiley & Sons 1999,
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Fractional uncertainty of gluon
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Uncertainty bands (envelope of possible fits) for the
gluon distribution at Q2 = 10 GeV=.

Curves show

CTEQ5M1 (solid)

CTEQS5HJ (dashed)

MRST2001 (dotted)
The differences between these are comparable to the
estimated uncertainty.

Uncertainties of quark distributions (not shown) are

smaller than the gluon uncertainty, because extensive
DIS measurements are sensitive to the square of the
quark charge in leading order.
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Summary of Uncertainty Methods

Consistent estimates of the uncertainty ranges are
found using several different methods:
e '"Hessian Method” — eigenvectors of the error
matrix
e “Lagrange Multiplier Method” — variation of y?
e systematic reweighting of experiments
e random reweighting (statistical bootstrap)

25



Application: Measurement of ag

The CTEQ®6 analysis gives
ag(Myz) = 0.1165 4+ 0.0065

This is nicely consistent with the World Average, but
not precise enough to improve on it.

Ay?=1 ranges from GA
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Application: W rapidity distribution

Our methods allow us to calculate the extreme
predictions due to PDF uncertainty for whatever

quantity is of experimental interest.

For example, extremes of oy, (y), (y2) for W
production at FNAL — relevant for My,

measurement:

do/dy

Same curves after subtracting central values. ..

These extremes can be important for the

measurement of W mass.
28



Application: Uncertainties of
luminosity functions at LHC

Luminosity function at LHC
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e One component of the uncertainty in predicting
the Higgs production cross section at LHC is an
uncertainty of 8 % due to PDF uncertainty.
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Application: Inclusive jet ratio
Inclusive jet energy dependence

ijfT(l.% TeV)

jT“T(l.so TeV)
between Tevatron Runl and RunlIl offers a sensitive
test of QCD and a probe for quark substructure,
because many systematic errors cancel. Right now it

IS an important check on the experimental jet
“energy scale” calibration.
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Prediction and uncertainty range from CTEQ®6.1
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Correlated Predictions

)(2 increase in global analysis asthe
W and H cross sections are varied at the LHC

Per cent change in H cross section

-4 -3 -2 -1 0 1 2 3 4
Per cent change in W cross section

Contours in Ax?2 show the correlation in PDF
uncertainty for predictions of cross sections for W
and Higgs production at Fermilab (MRST)
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Outlook

Parton Distribution Functions are a necessary
infrastructure for precision Standard Model
studies and New Physics searches at hadron
colliders and experiments using hadron targets.
PDFs of the proton are increasingly well
measured.

Useful tools are in place to estimate the
uncertainty of PDFs and to propagate those
uncertainties to physical predictions. There is
adequate agreement between various methods
for estimating the uncertainty.

The "“Les Houches Accord” interface makes it
easy to handle the large number of PDF solutions
that are needed to characterize uncertainties.
(hep-ph /0204316, http://vircol.fnal.gov)

PDFs summarize fundamental nonperturbative
physics of the proton — a challenge to be
computed!

Improvements in the treatment of heavy quark
effects are in progress; will allow improved flavor
differentiation

HERA and Fermilab run II data will provide the
next major experimental steps forward, followed
by LHC.
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