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J. Huston, H. Lai, P. Nadolsky [hep-ph/0201195])

include new data sets

include correlated systematic experimental errors
evaluate uncertainties of the result:

— Eigenvector PDF sets to map uncertainties
— Lagrange multiplier results

Universal PDF interface: Les Houches Accord
Results:

— W and Z production

— parton-parton luminosities

— gluon and quark distributions

Measures of uncertainty

— Measurement of ag

— Statistical bootstraps

Outlook



Overview of QCD Global Analysis
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Sources of uncertainty:

1. Experimental errors included in 2

Unknown experimental errors
Parametrization dependence

Higher-order corrections & Large Logarithms
Power Law corrections ( “higher twist’)
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Fundamental difficulties:

1. Good experiments run until systematic errors
dominate; and the magnitude of systematic
errors involves guesswork.

2. Systematic errors of the theory and their
correlations cannot even be guessed.
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Kinematic region covered by data
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A wide variety of data are tied together by the
DGLAP renormalization group evolution equation.

Consistency — or lack thereof — between the
experiments can be observed only by applying QCD
to tie them together in a global fit.

All experiments that use hadrons in the initial state
— Tevatron, LHC, and non-accelerator experiments —
require the parton distributions for their analysis.



Selection of Data

CTEQS CTEQ®6

#  SyS #  Sys

BCDMS up 168 no | BCDMS pup 339 yes
BCDMS ud 156 no || BCDMS ud 251 yes
H1l ep 172 no || Hla ep e 104 yes
Hlb ep e 126 yes

ZEUS ep 186 no | ZEUS ep e 229 ves
NMC up 104 no || NMC up 201 yes
NMC up/un 123  no || NMC up/un 123 yes
CCFR F> VN 37 no | CCFR F> vN 159 vyes
CCFR F3 vN 87 no || CCFR F3 VN 87 no
E605 pp DY 119 no | E605 pp 119 no
NAS51 pd/pp DY 1 no || NA51 pd/pp 1 no
E866 pd/pp DY 15 no || E866 pd/pp 15 no
CDF W 11 no | CDF W 11 no
CDF jet 33 vyes || CDF jet 33 yes
D@jet 24 vyes | D@Jet o 90 ves

New Data

(Direct photon data are not used because of
uncontrolled systematic “kp" effects, which need

resummation)



CTEQ6 Global analysis

Input from Experiment:

e ~ 2000 data points with Q > 2 GeV from e, u, v
DIS; lepton pair production (DY); lepton
asymmetry in W production; high pp inclusive
jets; as(My) from LEP

Input from Theory:
e NLO QCD evolution and hard scattering
e Parametrize at Qq: AgzA1 (1 — z)42 (1 4+ Azz44)
e s=5=0.4(au+d)/2 at Qg; no intrinsic b or c

Construct effective Xglobal = D _expts X2
S Xglobal mcludes the known systematic errors
e Minimizing Xglobal yields “Best Fit" PDFs.
e Variation of Xglobal in neighborhood of the
minimum defines uncertainty limits.
e Estimate uncertainty as region of parameter
space where 2 < y2(BestFit) + 72 with T ~ 10.

(Quite different from Gaussian statistics because of
unknown correlated systematic errors in theory and

experiments — as measured by inconsistency between
experiments).



Comment on Parametrization
For dyg1, wyal, OF g, We use

zf(z,Qp) = Agx1 (1 — x)?2e3%(1 + eag) s

This corresponds to

d A A ca + cax
“In(zf)="t- 2 45T
dx x 1l —=x 1 4+ c5x
i.e., we add a 1:1 Padé form to the singular terms of
the traditional Agz41 (1 — z)42 parametrization.

A sufficiently flexible parametrization is important;
but for convergence, there must not be too many
“flat directions.” For that reason, some of the
parameters are frozen for some flavors.

(To measure a set of continuous PDF functions at Qg on the
basis of a finite set of data points would appear to be an
ill-posed mathematical problem. However, this difficulty is not
SO severe as might be expected since the actual predictions of
interest that are based on the PDFs are discrete quantities. In
particular, fine-scale structure in = in the PDFs at Qg tend to
be smoothed out by evolution in Q. They correspond to flat
directions in x? space, so they are not accurately measured; but

they have little effect on the applications of interest.)



MSU/CTEQ uncertainty methods

2-dim illustration of the 4
neighborhood of the global Ly
minimum in the 16-dim parton

parameter space ...

v2 - contours

» a;

e Hessian Matrix Method: eigenvectors of
error matrix yield 40 sets {Sii} that are displaced
“up” or “down” by Ax? = 100 from the best fit.
Get error by sum of squares and construct
extreme PDFs for any observable; or simply look
at extremes from the 40 sets.

e Lagrange Multiplier Method:  Track x2 as
function of F (e.g. oyy) by minimizing x2 + \F.
Yields special-purpose PDFs that give extremes
of oy, or (y) for rapidity distribution of W, or o
for tt production:; or
oi7(v/s = 14TeV)/oz7(/s = 2TeV), or My, mass
measurement error,. ..



Hessian (Error Matrix) method

Classical error formulae

A2 = Y (a; — al ) (H)j(a; — alD)
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Hessian matrix H is inverse of error matrix.

Direct application fails because of extreme

differences in variation of x2 for different directions

in the space of fitting parameters (“steep” and

“flat” directions), as shown by a huge range of

eigenvalues of H:
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Convergence problems are solved by an iterative

method that finds and rescales the eigenvectors of
H, leading to a diagonal form

AX2 — Zzzz
)

(ar)? =3 (F(s) — P8O

7

where Si("') and Si("') are PDF sets that are displaced
along the eigenvector directions. The iterative

procedure is available in FORTRAN at
http://www.pa.msu.edu/~pumplin/iterate/
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2 and Systematic Errors

The simplest definition

N 2 D; = data
D; —T; '
o= ( -~ ) T; = theory
i—1 9; o; = ‘“‘expt.error”

is optimal for random Gaussian errors,

e—r2/2

D, =T; + o;r; with P(r) = .
V2T

With systematic errors,

K
D; = Ti(a) + oyrstat, + Z 71 Bki -

k=1

The fitting parameters are {a,} (theoretical model) and {r;}
(corrections for systematic errors).

Published experimental errors:

e «, IS the ‘standard deviation’ of the random uncorrelated
error.

e (3.; is the ‘standard deviation' of the kth (completely
correlated!) systematic error on D;.
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To take into account the systematic errors, we define

Y (Di- i —T)°
X'Q(GA,Tk)=Z< Z”iﬁk ) +Z7“/3,
k

%
=1 4

and minimize with respect to {r;}. The result is
= Z (A1), Bi, (systematic shift)
k/
where

%

N
Akk/ — 5kk/ _l_ Z IBkllgk/l
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The 7,'s depend on the PDF model parameters {a,}. We can
solve for them explicitly since the dependence is quadratic.

We then minimize the remaining x?(a) with respect to the
model parameters {a,}.

e {a,} determine fi(z,Q3).

e {7} are are the optimal “corrections” for systematic
errors; i.e., systematic shifts to be applied to the data
points to bring the data from different experiments into
compatibility, within the framework of the theoretical
model.
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Comparison to Data

Comparison of the CTEQ6M fit to data with
correlated systematic errors.

data set Ne X2 x2/Ne

BCDMS p 339 377.6 1.114
BCDMS d 251 279.7 1.114

H1la 104 98.59 0.948
H1lb 126 129.1 1.024
ZEUS 229 262.6 1.147

NMC F2p 201 304.9 1.517
NMC F2d/p | 123 111.8 0.909
DO jet 90 69.0 0.766
CDF jet 33 48.57 1.472

Other data sets:

CCFR v DIS (150/156)

E605
E866
CDF

Drell-Yan (95/119)
Drell-Yan (6/15)
W-lepton asymmetry (10/11)
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CTEQ6M fit to ZEUS data at low =z

2.5}

x=0.000161 ZEUS data
+ x=0.000253 low x values

5 10 50 100 500 1000
Q* [GeVv?]
The data points include the estimated corrections
for systematic errors. That is to say, the central values
plotted have been shifted by an amount that is consistent with
the estimated systematic errors, where the systematic error

parameters are determined using other experiments via the
global fit.

The error bars are statistical errors only.
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CTEQ6M fit to ZEUS data at high =z

1.75} ZEUS data
$ x=0.013 high x values
x=0.032
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The data points include the estimated corrections
for systematic errors.

The error bars are statistical errors only.
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(a) Histogram of residuals for the ZEUS data. The
curve is a Gaussian of width 1.
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(b) A similar comparison but without the corrections
for systematic errors on the data points.
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(b) A similar comparison but without the corrections
for systematic errors on the data points.
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ZEUS shifts

Systematic shifts for the ZEUS data
(10 systematic errors)

NMC shifts

Systematic shifts for the NMC data
(11 systematic errors)
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CDF inclusive jet cross section
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Recall that these inclusive jet cross section measurements
provided the first major stimulus to the study of PDF
uncertainties — in particular, the uncertainties associated with

choices made in the form of parametrizations at Qo.
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CDF Inclusive jets — systematic errors
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W rapidity distributions

Our methods allow us to calculate the extreme
predictions due to PDF uncertainty for whatever
quantity is of experimental interest.

For example, extremes of oy, (y), (y2) for W
production at FNAL — relevant for My,

measurement:

do/dy

Same curves after subtracting central values. . .

0.02

0.00 ~=

do/dy — (do/dy),

-0.02
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Uncertainty of the gluon distribution
RO ' I oot Hli

gluon at Q = 3.16 GeV

R

Ratio to CTEQG6

0 5 I_I|I 1 | 1 1 | 1 1 |
1010740 01.02 .05 .1 2 3 4 5 .6.7.891

X

Uncertainty bands (envelope of possible fits) for the
gluon distribution at Q2 = 10 GeV?=.

The curves correspond to
CTEQ5M1 (solid)
CTEQ5HJ (dashed)
MRST2001 (dotted)

Ironically, the differences between these is
comparable to the estimated uncertainty!

The uncertainties of quark distributions (not shown) are
smaller than this gluon uncertainty, because the DIS
measurements are sensitive to the square of the quark charge in

leading order. The uncertainties of all PDFs decrease with

increasing @ — ‘“convergent evolution”
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Measurement of as

We find that the CTEQ6 analysis is nicely consistent
with the World Average determination of as(My).
But it is not precise enough to improve that value.

PDG 2000 summary
009 01 011 0122 013 014 045

—o— Average
° Hadronic Jets

° e+€
——e&—— e+e— event shap
—=e—— Fragmentation

—e— Z width

° ep event shap
° Polarized DIS

—e— DIS

—e— tau decays
—e— Lattice

—e— Y decay

009 01 011 012 013 014 015
as(Mz)
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Measurment of ag(My):

If assume sz — 1 criterion in each experiment, the
experiments are inconsistent.

Our error estimate (T'= 10) is
ag(My) = 0.1165 + 0.0065

This corresponds to somewhat conservative
assumptions — perhaps to be thought of as an
effective 20" limit. Hence it is comparable to the
MRST limit based on T' = 5.

Ay?=1rangesfrom GA
0.09 0.1 0.11 0.12 0.13 0.14 0.15

—e— BCDMSp
—e— BCDMSd
—e— Hla

—e— Hib
—e— ZEUS

—e— NMCp
. NMCr

—e- CCFR2
—eo— CCKFRS
—— | E605

® CDFw
® E866
—o— DOjet
—o— (CDFjet

on@u— M RST Val ue

0.69 Oll O.il 0.12 0.13 0.14 0.15
alphaS
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Similar situation for W and Z cross sections

When a strict AX2 — 1 criterion was applied to
self-consistent subsets of the experiments, the
subsets were not consistent with each other.

The true error is therefore considerably larger than
Ax? =1 would imply.

Giele-Keller 2001 (hep-ph/0104053)

g

—G¢ o
=}

" HH M

— - 9¢

— 810

-

—<¢c0

d3T+5993+SNA08+IH
R —

UoJIBAS | 8] 1B 985-X 7

- ¥¢0

OAN —b——
sn3z ——

26



New ways to measure consistency of fit
(Work in progress with John Collins)

Key idea: In addition to the
Hypothesis-testing criterion Ay?2 ~ /2N
we use the stronger
Parameter-fitting criterion Ax? ~ 1

The parameters here are relative weights assigned to
various experiments, or to results obtained using
various experimental methods. Examples:
e Plot minimum x? vs. xi. — X2, Where x? is one
of the experiments, or all data on nuclei, or all
data at low Q2,. ..

or
e Plot both as function of Lagrange multiplier «

where (1 — u)XZQ + (1 + u)(X’%ot — XZQ) is the
quantity minimized.

Can obtain quantitative results by fitting to a model
with a single common parameter p:
2 .
2=A+ (gfy)" = p=0%sing
2 _ p—5\2 _
Xnot i = B + (cose) = p=S5+cosh
These differ by S+ 1, i.e., by S ‘“standard deviations”
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Application: Uncertainties of

luminosity functions at LHC

Luminosity function at LHC
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Note that one component of the
uncertainty in predicting the Higgs
production cross section at LHC is
an uncertainty of ~ 8% due to PDF

uncertainty.
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Outlook

Parton distributions of the proton are increasingly well
measured.

Useful tools are in place to estimate the uncertainty of
PDFs and to propagate those uncertainties to physical
predictions.

The Les Houches Accord interface makes it easy to handle
the large number of PDF solutions that are needed to
characterize uncertainties. (hep-ph/0204316)

Work on refining the knowledge of the “Tolerance
Parameter” T is underway

— Collins & Pumplin [hep-ph/0105207]

— Statistical bootstrap methods

Improvements in the treatment of heavy quark effects are
in progress.

Fermilab run II data and HERA II data will provide the
next major experimental steps forward.

Parton Distribution Functions are a major avenue
toward understanding the fundamental
nonperturbative physics of the proton. They are also
a crucial prerequisite for precision Standard Model
studies and New Physics searches at hadron colliders
and experiments with hadron targets.
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