
Worksheet #7 – PHY102 (Spring 2011)

Collisions

In this worksheet, we will return to solving equations and solving differential equations.

Often there are multiple ways to accomplish something in Mathematica. Usually one way is easier
than another but less elegant. Why might you want to use the elegant method rather than the
“easy” one? Because it can often save trouble later on in your Mathematica session. Here is
an example. Let’s say you want to know the distance a mass of 50 kg falls in 30 s, after falling
out of an airplane. Obviously you want to use y = v0t + 1

2
at2, where v0 = 0, t = 30 s and

a = −g = −9.81 m/s2 . The simplest way is to type directly into Mathematica:
y = -9.81*30ˆ2/2

A more elegant route is to type:
v0 = 0;
a = -9.81;
t = 30;
y = v0*t + a*tˆ2/2

Or a more space-saving way would be:
{v0,a,t}={0,-9.81,30};
y=v0*t + a*tˆ2/2

A problem with these approaches may arise later, because you have permanently defined the vari-
ables v0, a and t to these values, so wherever they appear later in your Mathematica notebook,
those numerical values will be substituted—possibly leading to undesired results. It is to clean up
messes like this that we often use

Remove["Global̀ *"]

Furthermore, whenever you are exploring a physics problem, you will often find yourself wanting
to see what happens if you change the initial assumptions, such as the values of v0, a, and t in
this example.

A more elegant solution to this problem is to define the equation in algebraic form, and then obtain
the particular solution using substitutions. One way to do this is to write

y = v0*t + a*tˆ2/2
sol1 = y /. {v0 → 0, a → -9.81, t → 30}

(To make the → symbol, just type “-” followed by “>” and Mathematica will automatically produce
the desired arrow.)
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Or similarly, you can write
y[t ] := v0*t + a*tˆ2/2
sol1 = y[t] /. {v0 → 0, a → -9.81, t → 30}

In this method, you could also replace the second line by
sol1 = y[30] /. {v0 → 0, a → -9.81}

These solutions are elegant because the quantity of interest is defined as a function, so we can
operate on it (for example, find its derivative etc.). We found the particular solution we were
looking for (i.e., got the same result as we did when we used the “easy” methods shown above)
but didn’t permanently reset the values of any internal variables in Mathematica. Try it. Enter
the different commands above. Then check what Mathematica thinks the variables (e.g., a and
v0) are after each case. Use a Remove["Global̀ *"] in between each test. You may have already
been using this “substitution” technique, if you have been using the DSolve example given out
with worksheet 4. When you use DSolve or Solve, for example, the solutions to the equation are
returned as a list of substitutions. You can see this by entering the following code:

(* This solves two simultaneous linear equations *)
f1[x ,y ]:= a*x + b*y + c
f2[x ,y ]:= d*x + e*y + f
sol = Solve[{f1[x,y]==0, f2[x,y]==0}, {x,y}]
{x,y}={x,y}/. sol[[1]]

(* This checks to see that the solutions are correct *)
Simplify[f1[x,y]]
Simplify[f2[x,y]]

The definition f1[x_,y_]:=. . . defines a function whose two arguments can later be called anything
you like. It is often simpler to specify a function in the following way, which is equivalent to the
above:

(* Alternative solution for the two simultaneous equations *)
Remove[”Global‘*”]
f1 = a*x + b*y - c ;
f2 = c*x + d*y - e ;
sol = Solve[f1 == 0, f2 == 0, x, y]
x, y = x, y /. sol[[1]]

(*This checks to see that the solutions are correct*)
Simplify[f1]
Simplify[f2]
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Problem 1

Use Mathematica to solve the following problem (using the examples above to see how to solve the
equations). A ball of mass m moving horizontally with a velocity ui undergoes a head-on elastic
collision with another ball of mass M traveling at velocity Ui. Apply conservation of momentum
and energy to find expressions for the final velocities uf and Uf of these two particles as a function
of m, M, ui and Ui. Verify your solutions by confirming that they preserve energy and momentum
conservation.

Now find the final velocities for each of the following special cases:
(i) m = M
(ii) m = 2M
(iii) m = 0

Problem 2

A particle of mass m traveling with speed v in the horizontal direction strikes a pendulum, which
consists of a thin uniform rod of length A and mass M which is initially hanging vertically at rest.
The particle hits the very bottom of the pendulum and sticks to it there. As a result, the center of
mass of the pendulum+particle system rises to a maximum vertical distance H above its original
value. After that, if falls back and continues to oscillate forever since we ignore friction.

Note that Energy is not conserved during the collision: the collision is inelastic or the projectile
wouldn’t stick. Also Momentum is not conserved, because the pivot point of the pendulum supplies
a force.

The quantity that is conserved during the collision is the angular momentum, so that is the con-
servation law you need to find the initial conditions at t = 0, where the angle of the pendulum
is 0. After you use angular momentum conservation to find the initial angular velocity of the
rod+projectile system, you can find the kinetic energy of that system. Then use energy conser-
vation to compute the subsequent motion. Use the angle of the pendulum with respect to the
downward direction as the coordinate.

For anyone rusty on their mechanics knowledge—or who has not yet encountered this material in
other physics classes, the moment of inertia of the uniform rod pivoted about its end is M A2/3.
(You might enjoy using Mathematica to derive that result.) The moment of inertia contributed by
the original projectile is m A2 since all of that mass is located at radius A. The angular momentum
of the mass+rod system is given by L = I ω. The kinetic energy of the mass+rod system is given
by KE = (1/2) I ω2. Here, ω = dθ/dt and I is the total moment of inertia. Note, you must
choose some other name for the moment of inertia in your Mathematic code, because
Mathematica insists on using I to denote the imaginary number

√
−1.
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(i) Find the maximum angle by which the pendulum swings (as a function of H).

(ii) Find the initial speed of the particle (as a function of H).

(iii) Now suppose m = 1 kg, M = 9 kg, g = 10.0m/s2 , H = 4 m, A = 10 m. Find and plot the
pendulum angle as a function of time.

There are two ways to find equations of motion for this problem: you can write a differential
equation for the motion using the torque due to gravity on the system; or you can use energy
conservation. The energy conservation method is better, because it leads to a first-order differ-
ential equation instead of second order; and because it lets you build in the boundary condition
corresponding to the initial condition of known total energy directly.

Note: when your instructor solved this problem, Mathematica was not able to solve the equation
when the initial condition theta[0]==0 was included in DSolve. But without that condition, it did
give a solution, which contained an unknown integration constant. You can set that constant to
zero by /. C[1] -> 0.

(iv) Now solve the linear pendulum problem using the same parameters. (The “linear” approx-
imation for the pendulum corresponds to approximating sin θ by θ in the torque equation; or
equivalently approximating cos θ by 1 − θ2/2 in the potential energy.)

Plot the time dependent oscillations of the full solution and the linear approximation on the same
graph. Can you explain the qualitative difference between the two on physical grounds?
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