
Worksheet #9 – PHY102 (Spring 2011)

More on Do loops: Intentional chaos

Tools you will need

This week you will need to use ListPlot, Animate, and Do or For. You can review these in your
notebook from Worksheet 6, where they were introduced; or you can look them up in the online
help. You will also want to use Table or NestList, so have a look at those in the online help and
make up some examples for yourself to get familiar with them before starting in on the assigned
problem.

The new physics – Chaos

Chaos, though it had been discussed extensively for a couple of centuries (e.g. Boltzmann and
Maxwell discussed “molecular chaos”), has really come into its own since the widespread use
of computers. That is because the solutions to chaotic systems—even simple ones—do not lend
themselves to the kind of mathematical closed-form solutions that are can be handled by traditional
analytic mathematical methods.

An early surprise was that even quite simple looking systems can display chaotic behavior, whereas
it was originally thought that chaos only occured in systems with billions of molecules. In this
worksheet, you will study perhaps the simplest system which shows chaos: namely, the purely
mathematical nonlinear “mapping”

xn+1 = λ xn (1 − xn) (1)

This mapping model can be used, for example, to describe how a population density, xn changes
from one generation (n) to the next (n + 1). Actually, it is not a very realistic model; but it does
illustrate many of the features of more complex systems. The parameter λ can be considered to
be the “birth rate”, i.e., the number of offspring from the last generation. The way it works is
that if we know the population density at some time and call that density x1, then the population
density of the next generation is x2 = λ x1 (1 − x1). This procedure is continued using Eq. 1 to
find the population density for later generations. Intuitively, chaos means a lack of order. Mathe-
matically, it is defined by how stable the behavior of a set of equations is to small perturbations in
the initial conditions. In the context of equation 1, this means how stable is the series of iterates
(x1, x2, x3, . . . ) when you make a very small change x1 → x δ

1 = x1 + δx. When this change is
made, we get a new set of iterates (x δ

1 , x δ

2 , x δ

3 , . . . ).

If a set of equations is in a chaotic regime then the trajectories defined by these series of points
diverge exponentially. In the context of our example,

|x δ

n
− xn| ∼ eνn, (2)
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where in a chaotic system, the Lyapunov exponent ν is positive.

Problem 1

(i) Write a Mathematica code to iterate the mapping in Eq. (1). (You can use Do, For, or
NestList for it. Another useful function is Range, which can be used to specify the dimen-
sion of an array—even if you don’t want to use the values that Range puts into that array.)
Plot the steady-state behavior of the mapping as a function of the parameter λ for 1 < λ < 4.
Do this for several different values of the starting point x1 in the range 0 < x1 < 0.5 .

(ii) For some particular value of λ in the regime that looks chaotic in your graph, make an esti-
mate of the Lyapunov exponent using Eq. 2.

Hint: choose x1 and x δ

1 = x1 + δx, where δx is small. Plot the series x δ

n
− xn as a function

of n and look for exponential growth on the average. Since you are looking for x δ

n
− xn ≈

const × eνn, you might want to also plot the sequence log(|x δ

n
−xn|) or even ( 1

n
) log(|x δ

n
−xn|).

If all is well, your estimate of the Lyapunov exponent ν will be independent of the choices of
x1 and δx.
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