Homework \#1 Due at beginning of class Wednesday Jan 18.

1. [3 pts] Given the vectors $\mathbf{a}=(1,2,4)$ and $\mathbf{b}=(2,4,1)$
(a) Find the scalar $\mathbf{a} \cdot \mathbf{b}$.
(b) Use dot products to find the angle between the vectors \mathbf{a} and \mathbf{b}. Give your answer in degrees.
(c) Find the vector $\mathbf{a} \times \mathbf{b}$.
2. $[4 \mathrm{pts}]$
(a) Express $(1-\cos x) / x^{2}$ for small x as a power series in x, keeping terms up through order x^{4}.
(b) Express $\sin (\pi / 3+x)$ for small x as a power series in x, keeping terms up through order x^{5}.
3. [8 pts]
(a) Solve the differential equation $\frac{d F}{d t}=2$ for $F(t)$ subject to the condition $F(0)=F_{0}$, where F_{0} is a constant.
(b) Solve the differential equation $\frac{d F}{d t}=2 t$ for $F(t)$ subject to the condition $F(0)=F_{0}$, where F_{0} is a constant.
(c) Solve the differential equation $\frac{d F}{d t}=2 F$ for $F(t)$ subject to the condition $F(0)=F_{0}$, where F_{0} is a constant.
(d) Solve the differential equation $\frac{d F}{d t}=2 F t$ for $F(t)$ subject to the condition $F(0)=F_{0}$, where F_{0} is a constant.
4. [5 pts] Taylor problem 1.37
