Homework \#4, Due at beginning of class Wednesday Feb 8.

1. [5 pts] A uniform flat sheet of metal occupies the region $0<y<\left(A^{2}-x^{2}\right) / B$ in the plane $z=0$, where A and B are positive constants and $-A<x<A$.
(a) Find the position of its center of mass.
(b) Find its moment of inertia for rotations around the z axis about the point $x=y=0$. (Give your answer in terms of the total mass M, and the parameters A and B.)
(c) Find its moment of inertia for rotations about an axis that points in the z direction through its center of mass. Again give your answer in terms of the total mass M and the parameters A and B. (Hint: remember the parallel axis theorem.)
2. [5 pts] A point particle with charge Q and mass M is subjected to a time-dependent electric field which points in the \hat{x} direction, with

$$
E_{x}=E_{0} \sin (B t)
$$

where E_{0} and B are constants. Assume the particle starts at x_{0} and has velocity v_{0} in the positive \hat{x} direction at time $t=0$. The motion is in one dimension since $y=z=0$ at all times. Find $x(t)$.
3. [5 pts] Taylor problem 3.11 parts (a) and (b) only.
4. [5 pts] Taylor problem 3.29

