Physics 321 - Spring 2017

Homework \#5, due at beginning of class Friday Feb 17.

1. [10 pts] Suppose that the friction force on an object of mass M traveling through a fluid is proportional to the cube of the velocity: $F=-K v^{3}$, where K is a constant. Find the velocity as a function of time, assuming that the initial velocity is v_{0} at time $t=0$. Neglect gravity.
2. [10 pts] A sheet of metal is cut in the shape of a quarter of a disk with radius R. The two straight sides are along the x and y axes, which intersect at point O. The mass distribution is not uniform: the mass per unit area is given by $\sigma=c x$ where c is a constant.

(a) Find the mass of this object.
(b) Find its moment of inertia for rotations in the $\mathrm{x}-\mathrm{y}$ plane about the point O.
(c) Find the position $\left(x_{\mathrm{cm}}, y_{\mathrm{cm}}\right)$ of its center of mass.
