Physics 321 - Spring 2017
 Homework \#7, due at beginning of class Wednesday Mar 1.

1. [4 pts] You are designing a roller-coaster. One section of the track will be advertised as "The Loop." The shape of the track is defined parametrically by the equations

$$
\begin{aligned}
x & =[u / 2+\sin (u)] H / 2 \\
y & =[1-\cos (u)] H / 2 \\
z & =0
\end{aligned}
$$

where y is the height above ground and $0<u<2 \pi$. Find the force due to the track on the car of mass M when the car reaches its maximum height H at $u=\pi$, ignoring friction. Assume the car starts at $u=0$ with speed v_{0}. (This design probably needs some adjustment to improve the safety of the passengers: the initial velocity must be sufficient to carry the car over the top, which makes the acceleration at the beginning of the track at least 2.77 g .)
2. [4 pts] Solve the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{2 x+1}{t+2}
$$

to find x as a function of t, given that $x=0$ at $t=0$. (This problem does not come from any physics problem, but it's a good example to practice your equation-solving skills on!)
3. [4 pts] The position of a point particle is governed by the equation of motion

$$
\ddot{x}+A x=B
$$

where A and B are constants. It starts at $x=0$ with $\dot{x}=v_{0}$ at $t=0$.
(a) Find x as a function of time t assuming $A>0$.
(b) Find x as a function of time t assuming $A<0$.
4. [4 pts] Taylor problem 4.2
5. [4 pts] Taylor problem 4.36

