Physics 321 - Spring 2017

Homework \#8, Due at beginning of class Wednesday March 15.

1. [4 pts] Taylor problem 5.2
2. [4 pts] Taylor problem 5.28
3. [4 pts] A hook is at height y above the floor, where y is constant for all negative times: $y=y_{0}$ for $t<0$. For positive times, y oscillates: $y=y_{0}+A \sin \omega t$ for $t>0$. A mass M hangs from an ideal massless spring attached to this hook. The mass is at height x above the floor. The mass hangs motionless at $x=x_{0}=y_{0}-M g / k$ for $t<0$, where k is the spring constant. Let $\omega_{0}=\sqrt{k / M}$ as usual. You can figure out what the unstretched length of the spring is from the information given.
(a) Find the motion $x(t)$ of the mass for $t>0$ if $\omega=2 \omega_{0}$.
(b) Find the motion $x(t)$ of the mass for $t>0$ if $\omega=\omega_{0}$.

The efficient and elegant way to do this problem is to first solve it for an arbitrary driving frequency ω, and then set $\omega=2 \omega_{0}$ for part (a) and take the limit $\omega \rightarrow \omega_{0}$ for part (b). But if you're chicken, you could just treat (a) and (b) as two separate problems.
4. [4 pts] A driven harmonic oscillator obeys the equation
$\ddot{x}+x=t(A-t)$ for $0<t<A$. Given the initial conditions $x=\dot{x}=0$ at $t=0$, find the subsequent motion $x(t)$ during the time interval $0<t<A$.
5. [4 pts] A damped driven harmonic oscillator obeys the equation
$\ddot{x}+2 \beta \dot{x}+x=t e^{-\alpha t}$ for $t>0$, where $0<\beta<1$ and α is a positive constant.
Given the initial conditions $x=\dot{x}=0$ at $t=0$, find the subsequent motion $x(t)$. (Hint: as is so often the case, the easiest way to solve the differential equation is to guess the answer.)

