Physics 321 – Spring 2017

Homework #8, Due at beginning of class Wednesday March 15.

- 1. [4 pts] Taylor problem 5.2
- 2. [4 pts] Taylor problem 5.28
- 3. [4 pts] A hook is at height y above the floor, where y is constant for all negative times: $y = y_0$ for t < 0. For positive times, y oscillates: $y = y_0 + A \sin \omega t$ for t > 0. A mass M hangs from an ideal massless spring attached to this hook. The mass is at height x above the floor. The mass hangs motionless at $x = x_0 = y_0 - Mg/k$ for t < 0, where k is the spring constant. Let $\omega_0 = \sqrt{k/M}$ as usual. You can figure out what the unstretched length of the spring is from the information given.
 - (a) Find the motion x(t) of the mass for t > 0 if $\omega = 2\omega_0$.
 - (b) Find the motion x(t) of the mass for t > 0 if $\omega = \omega_0$.

The efficient and elegant way to do this problem is to first solve it for an arbitrary driving frequency ω , and then set $\omega = 2\omega_0$ for part (a) and take the limit $\omega \to \omega_0$ for part (b). But if you're chicken, you could just treat (a) and (b) as two separate problems.

- 4. [4 pts] A driven harmonic oscillator obeys the equation $\ddot{x} + x = t (A - t)$ for 0 < t < A. Given the initial conditions $x = \dot{x} = 0$ at t = 0, find the subsequent motion x(t) during the time interval 0 < t < A.
- 5. [4 pts] A damped driven harmonic oscillator obeys the equation $\ddot{x} + 2\beta \dot{x} + x = t e^{-\alpha t}$ for t > 0, where $0 < \beta < 1$ and α is a positive constant.

Given the initial conditions $x = \dot{x} = 0$ at t = 0, find the subsequent motion x(t). (Hint: as is so often the case, the easiest way to solve the differential equation is to guess the answer.)