Physics 321 – Spring 2017

Homework #9, Due at beginning of class Friday March 24

- 1. [20 pts] A "triangle wave" can be defined by $F(t) = 1 2\omega |t|/\pi$ for $-\pi/\omega < t < +\pi/\omega$, with F(t) defined at all other values of the time t by the property of having period $2\pi/\omega$.
 - (a) Find the Fourier series representation of this F(t). Express your answer BOTH in exponential form and in the form of sines and/or cosines. But get the exponential form first (it's easier); and then get the sines+cosines version from that.
 - (b) Solve the driven damped oscillator equation $\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = F(t)$ in the form of an infinite series. You will find the exponential form of your answer to part (a) most convenient, so your answer here will be a sum from $n = -\infty$ to ∞ of terms proportional to $e^{in\omega t}$. You can neglect the solutions to the homogeneous equation, which contains two arbitrary constants, because those "transient" effects go away like $e^{-\beta t}$ if you wait long enough.
 - (c) Convert your answer for part (b) to a sum of $sin(n \,\omega t)$ and $cos(n \,\omega t)$ terms with coefficients that are obviously real.
 - (d) Explicitly write out the $\sin(n \,\omega t)$ and $\cos(n \,\omega t)$ terms in part (c) for n = 1, n = 2, and n = 3 for the case $\omega = \omega_0/3$. Which term is most important if β is small?

Math reminders: You can separate real and imaginary parts using

$$\frac{1}{a+bi} = \frac{1}{a+bi} \times \frac{a-bi}{a-bi} = \frac{a-bi}{a^2+b^2}$$

$$e^{ia} = \cos(a) + i\,\sin(a)$$