Homework \#9, Due at beginning of class Friday March 24

1. [20 pts] A "triangle wave" can be defined by $F(t)=1-2 \omega|t| / \pi$ for $-\pi / \omega<t<+\pi / \omega$, with $F(t)$ defined at all other values of the time t by the property of having period $2 \pi / \omega$.
(a) Find the Fourier series representation of this $F(t)$. Express your answer BOTH in exponential form and in the form of sines and/or cosines. But get the exponential form first (it's easier); and then get the sines+cosines version from that.
(b) Solve the driven damped oscillator equation $\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=F(t)$ in the form of an infinite series. You will find the exponential form of your answer to part (a) most convenient, so your answer here will be a sum from $n=-\infty$ to ∞ of terms proportional to $e^{i n \omega t}$. You can neglect the solutions to the homogeneous equation, which contains two arbitrary constants, because those "transient" effects go away like $e^{-\beta t}$ if you wait long enough.
(c) Convert your answer for part (b) to a sum of $\sin (n \omega t)$ and $\cos (n \omega t)$ terms with coefficients that are obviously real.
(d) Explicitly write out the $\sin (n \omega t)$ and $\cos (n \omega t)$ terms in part (c) for $n=1, n=2$, and $n=3$ for the case $\omega=\omega_{0} / 3$. Which term is most important if β is small?

Math reminders: You can separate real and imaginary parts using

$$
\begin{gathered}
\frac{1}{a+b i}=\frac{1}{a+b i} \times \frac{a-b i}{a-b i}=\frac{a-b i}{a^{2}+b^{2}} \\
e^{i a}=\cos (a)+i \sin (a)
\end{gathered}
$$

