Homework \#10, Due at beginning of class Wednesday March 29

1. [10 pts] A "sawtooth wave" can be defined by $F(t)=t$ for $-\pi / \omega<t<+\pi / \omega$, with $F(t)$ defined at all other values of the time t by the property of having period $2 \pi / \omega$.

Find the Fourier series representation of this $F(t)$. Express your answer BOTH in exponential form and in the form of sines and/or cosines. But get the exponential form first (it's easier); and then get the constant + sines + cosines form from that.
2. [10 pts] Taylor Problem 6.9: Find the Equation of the path from $(0,0)$ to $(1,1)$ in the (x, y) plane that makes the integral

$$
\int\left(y^{\prime 2}+y y^{\prime}+y^{2}\right) d x
$$

stationary.

