Physics 321 – Spring 2017

Homework #12, Due at beginning of class Wednesday April 12.

1. [6 pts] A point mass M is attached to the ceiling by a massless spring that has spring constant k and unstretched length B.

(a) Write the Lagrangian for this system using r and θ as the coordinates. Assume the motion lies in the plane of the paper.

(b) Use your Lagrangian to find the second-order differential equations of motion. You do not have to solve those equations.

- 2. [6 pts] A thin flexible rope of length b and constant mass per unit length σ hangs over a pulley. The pulley has radius R and moment of inertia I.
 - (a) Write the kinetic energy in terms of \dot{x} and the constants given.
 - (b) Write the gravitational potential energy in terms of x and the constants given.
 - (c) Use the Lagrangian to obtain the differential equation of motion for x.
 - (d) Take the time derivative of the energy conservation equation E = T + V, and check that the result is consistent with your result for part (c).
 - (e) Solve the equation of motion assuming the rope starts at $x = x_0$, with velocity zero, at time t = 0.
- 3. [8 pts] One end of a uniform rod of mass M and length ℓ is constrained to oscillate in the vertical direction: $x_0 = 0, y_0 = R \sin(\omega t)$. The center of the rod is at

$$x_{\rm cm} = x_0 + (\ell/2)\sin(\phi)$$

 $y_{\rm cm} = y_0 + (\ell/2)\cos(\phi)$

- (a) Write the Lagrangian L = T V for this system, where $T = (1/2)M(\dot{x}_{\rm cm}^2 + \dot{y}_{\rm cm}^2) + (1/2)(M\ell^2/12)\dot{\phi}^2$ and $V = Mgy_{\rm cm}$.
- (b) Write the equation of motion: $\dot{p} = F$, where $p = \frac{\partial L}{\partial \dot{\phi}}$ and $F = \frac{\partial L}{\partial \phi}$.
- (c) Let $M=1,\,g=1,\,\ell=1,\,R=0.05\,.$ Try various values of $\omega,$ and use Mathematica to find the motion using

sol = NDSolve[{xxxx == 0, phi[0] == 0.4, phi'[0] == 0}, phi[t], {t, 0, 20}]
Plot[phi[t] /. sol[[1]], {t, 0, 20}]

where "xxxx" is the equation of motion, to find how the system moves if it starts at $\phi[0] = 0.4$, $\phi'[0] = 0$. For what values of ω does the system oscillate in a stable fashion about the vertical direction $\phi = 0$?

(Last updated 4/10/2017 $(\dot{x}^{\,2}_{\rm cm}\rightarrow \dot{y}^{\,2}_{\rm cm}$ in problem 3).)