Homework \#12, Due at beginning of class Wednesday April 12.

1. [6 pts] A point mass M is attached to the ceiling by a massless spring that has spring constant k and unstretched length B.
(a) Write the Lagrangian for this system using r and θ as the coordinates. Assume the motion lies in the plane of the paper.

(b) Use your Lagrangian to find the second-order differential equations of motion.

You do not have to solve those equations.
2. [6 pts] A thin flexible rope of length b and constant mass per unit length σ hangs over a pulley. The pulley has radius R and moment of inertia I.
(a) Write the kinetic energy in terms of \dot{x} and the constants given.
(b) Write the gravitational potential energy in terms of x and the constants given.
(c) Use the Lagrangian to obtain the differential equation of motion for x.
(d) Take the time derivative of the energy conservation equation $E=T+V$, and check that the result is consistent with your result for part (c).
(e) Solve the equation of motion assuming the rope starts at $x=x_{0}$, with velocity zero, at time $t=0$.
3. [8 pts] One end of a uniform rod of mass M and length ℓ is constrained to oscillate in the vertical direction: $x_{0}=0, y_{0}=R \sin (\omega t)$. The center of the rod is at

$$
\begin{aligned}
x_{\mathrm{cm}} & =x_{0}+(\ell / 2) \sin (\phi) \\
y_{\mathrm{cm}} & =y_{0}+(\ell / 2) \cos (\phi)
\end{aligned}
$$

(a) Write the Lagrangian $L=T-V$ for this system, where $T=(1 / 2) M\left(\dot{x}_{\mathrm{cm}}^{2}+\dot{y}_{\mathrm{cm}}^{2}\right)+$ $(1 / 2)\left(M \ell^{2} / 12\right) \dot{\phi}^{2}$ and $V=M g y_{\mathrm{cm}}$.
(b) Write the equation of motion: $\dot{p}=F$, where $p=\frac{\partial L}{\partial \dot{\phi}}$ and $F=\frac{\partial L}{\partial \phi}$.
(c) Let $M=1, g=1, \ell=1, R=0.05$. Try various values of ω, and use Mathematica to find the motion using
sol = NDSolve[\{xxxx == 0, phi[0] == 0.4, phi'[0] == 0\}, phi[t], \{t, 0, 20\}] Plot[phi[t] /. sol[[1]], \{t, 0, 20\}]
where "xxxx" is the equation of motion, to find how the system moves if it starts at $\phi[0]=0.4, \phi^{\prime}[0]=0$. For what values of ω does the system oscillate in a stable fashion about the vertical direction $\phi=0$?

