Section 3.2
 Rockets

Read Section 3.2.

The rocket contains a fuel that burns rapidly. As the exhaust gas is expelled from the combustion chamber, there is a reaction force on the rocket; "thrust".

Figure 3.2 A rocket of mass m travels to the right with speed v and ejects spent fuel with exhaust speed $v_{\text {ex }}$ relative to the rocket.

Now analyze the motion, using the principle of momentum, i.e.,

$$
\dot{\mathbf{P}}=\mathbf{F}^{\mathrm{ext}}
$$

eq. (3.1)

But be careful to identify \mathbf{P} correctly!
(Dot ${ }^{\bullet}$ means d/dt)

Figure 3.2 A rocket of mass m travels to the right with speed v and ejects spent fuel with exhaust speed $v_{\text {ex }}$ relative to the rocket.

Derive the equation of motion for the

 rocket.What I mean by the "rocket" is the metal cylinder plus the fuel inside.

The mass of the rocket decreases as fuel is expelled out the back.

Let $\mathrm{m}(\mathrm{t})=$ the mass of the rocket
at time t ;

$$
\mathrm{m}(\mathrm{t})=\mathrm{M}_{\mathrm{cyl}}+\mathrm{M}_{\text {fuel inside }}(\mathrm{t})
$$

The equation of motion will depend on two parameters of the rocket engine.

- Let $\mathrm{v}_{\mathrm{ex}}=$ the relative speed of the exhaust gas. Understand this:

The velocity of the exhaust gas at time t is $v(t)-v_{\text {ex }}$, where $v(t)$ is the velocity of the rocket.

- Let $\mathrm{K}=$ the mass rate of the exhaust gas. K is positive. Understand this:

$$
K=-d M_{F} / d t=-d m / d t
$$

I.e., K $\delta t=$ the mass of fuel expelled by the engine during the time δt
$=$ the decrease of the rocket mass during δt. (units of $\mathrm{K}: \mathrm{kg} / \mathrm{s}$)

Consider the change of momentum of the system = rocket and fuel, from time \boldsymbol{t} to time $\boldsymbol{t}+\boldsymbol{\delta} \boldsymbol{t}$.

The total momentum at time t is

$$
P(t)=m(t) v(t)+P_{\text {fuel already expelled before } t}
$$

(I'm only considering one-
dimensional motion of the rocket.)
The total momentum at time $t+\delta t$ is

$$
\mathrm{P}(\mathrm{t}+\delta \mathrm{t})=\mathrm{m}(\mathrm{t}+\delta \mathrm{t}) \mathrm{v}(\mathrm{t}+\delta \mathrm{t}) \quad \leftarrow \text { rocket at } \mathrm{t}+\mathrm{dt}
$$

$+(\mathrm{K} \delta \mathrm{t})\left[\mathrm{v}(\mathrm{t})-\mathrm{V}_{\mathrm{ex}}\right] \quad \leftarrow$ fuel expelled during dt
$+\mathrm{P}_{\text {fuel already expelled before } \mathrm{t}}$

$$
=(m+\delta m)(v+\delta v)+(K \delta t)\left(v-v_{e x}\right)+P_{\text {already }}
$$

(Because I will take δt to be infinitesimal, it does not matter if I take the exhaust speed during δt to be $v(t)-v_{\text {ex }}$ or $v(t+\delta t)-v_{\text {ex }}$ or something in between.)

The change of total momentum $=\delta \mathrm{P}$

$$
=\mathrm{P}(\mathrm{t}+\delta \mathrm{t})-\mathrm{P}(\mathrm{t}) .
$$

Now, the equation of motion follows from the theorem, $\mathrm{dP} / \mathrm{dt}=\mathrm{F}^{\text {ext }}$.
$\therefore \mathrm{F}^{\mathrm{ext}}=\lim [\mathrm{P}(\mathrm{t}+\delta \mathrm{t})-\mathrm{P}(\mathrm{t})] / \delta \mathrm{t} \quad(\delta \mathrm{t} \rightarrow 0)$
$=\left[(m-K \delta t)(v+\delta v)+K \delta t\left(v-v_{e x}\right)-m v\right] / \delta t$
$=\left[\mathrm{m} \delta \mathrm{v}-\mathrm{K} \delta \mathrm{t} \mathrm{v}+\mathrm{K} \delta \mathrm{t}\left(\mathrm{v}-\mathrm{v}_{\mathrm{ex}}\right)+\mathrm{O}\left(\delta^{2}\right)\right] / \delta \mathrm{t}$
$=\mathrm{mdv} / \mathrm{dt}-\mathrm{K}_{\mathrm{ex}} \quad$ in the limit $\delta \mathrm{t} \rightarrow 0$.
Note the cancellations!

The rocket equations

For a rocket moving in one dimension, the velocity $\mathrm{v}(\mathrm{t})$ obeys

$$
\begin{equation*}
m \frac{d v}{d t}=K v_{e x}+F^{e x t} \tag{1}
\end{equation*}
$$

where $v_{e x}=$ the relative speed of the exhaust and $K=$ the mass rate of the exhaust. Here $m(t)$ is the mass of the rocket including enclosed fuel, so

$$
\begin{equation*}
\frac{\mathrm{dm}}{\mathrm{dt}}=-\mathrm{K} \tag{2}
\end{equation*}
$$

Thrust force $=\mathrm{K}_{\mathrm{ex}}$.

Example. A rocket in deep space with constant values of $\mathrm{v}_{\text {ex }}$ and $\mathrm{K} \ldots$
Let the initial velocity be v_{0} and the initial mass be m_{0}.
Calculate the velocity at time t .
By eq.(2), $\quad m(t)=m_{0}-K t$
Then eq.(1) is

$$
\left(\mathrm{m}_{0}-\mathrm{K} \mathrm{t}\right)(\mathrm{dv} / \mathrm{dt})=\mathrm{K} \mathrm{v}_{\mathrm{ex}}
$$

Using separation of variables,

$$
d v=K v_{\text {ex }} /\left(m_{0}-K t\right) d t ;
$$

integrate both sides of the equation,
$\mathrm{v}-\mathrm{v}_{0}=-\mathrm{v}_{\mathrm{ex}}\left[\ln \left(\mathrm{m}_{0}-\mathrm{Kt}\right)-\ln \left(\mathrm{m}_{0}\right)\right]$

$$
\mathrm{v}=\mathrm{v}_{0}+\mathrm{v}_{\mathrm{ex}} \ln \left[\mathrm{~m}_{0} /\left(\mathrm{m}_{0}-\mathrm{Kt}\right)\right]
$$

Example \#2. A rocket in deep space with constant $\mathrm{v}_{\text {ex }}$ and arbitrary time dependence, $K(t)$

Let the initial velocity be v_{0} and the initial mass be m_{0}.
Calculate the velocity at time t.
Result: $\mathrm{v}=\mathrm{v}_{0}+\mathrm{v}_{\mathrm{ex}} \ln \left[\mathrm{m}_{0} / \mathrm{m}(\mathrm{t})\right]$

Proof:

$$
\mathrm{v}=\mathrm{v}_{0}+\mathrm{v}_{\mathrm{ex}} \ln \left[\mathrm{~m}_{0}\right]-\mathrm{v}_{\mathrm{ex}} \ln [\mathrm{~m}(\mathrm{t})]
$$

$$
\begin{aligned}
& \text { Calculate } d v / d t \\
& =-v_{\text {ex }} \frac{1}{m} \frac{d m}{d t} \\
& \text { Thus } \\
& \qquad m \frac{d v}{d t}=K v_{\text {ex }} \\
& \text { which is correct because } \\
& \text { Fen }=0 \text { in deep space. }
\end{aligned}
$$

Graph of velocity versus time for constant K .

Take off from Earth's surface

Approximate $g=$ constant and $v_{x x}=$ constant.
Separation of variables

$$
\begin{aligned}
& m d v=k v_{e x} d t-m g d t \\
& d v=v_{e x}\left(\frac{-d m}{m}\right)-g d t \\
& d v^{\prime}=v_{x x}\left(-\frac{d m^{\prime}}{m}\right)-g d t^{\prime}
\end{aligned}
$$

Integrate $t^{\prime}=$ intermediate time $\in(0, t)$

$$
\begin{aligned}
& \int_{0}^{v} d v^{\prime}=v=\int_{m_{0}}^{m} v_{e x} \frac{\left(-\Delta m^{\prime}\right)}{m^{\prime}}-\int_{0}^{t} g d t^{\prime} \\
& v(t)=v_{\text {ex }} \ln \frac{m_{0}}{m(t)}-g t
\end{aligned}
$$

A iso, $w(t)=m_{0}-k t$ if k is constant.
A success fol take-off requires
$K v_{\text {ex }}>m g$ ie. thrust $>$ weight

Graph of v as a function of t

(1) slope = acceleration
(2) runs out of fuel
(3) still rising but $\mathrm{a}=-\mathrm{g}$
(4) max height = area under the curve

A more difficult example:
Fire a rocket to the stars
Now g is not constant. As the distance from the earth increases, g decreases;

$$
g(r)=g_{s} R_{E}^{2} / r^{2} \quad \text { for } r>R_{E} .
$$

The equation of motion is

$$
m \frac{d v}{d t}=K v_{e x}-m g_{s} \frac{R_{E}^{2}}{r^{2}}
$$

We have

$$
m(d v / d t)=K v_{e x}-m g
$$

Approximate
$\mathrm{g}=$ constant and $\mathrm{v}_{\text {ex }}=$ constant. How to integrate the diff. eq.?

$$
\begin{aligned}
\mathrm{mdv} & =\mathrm{K}_{\mathrm{ex}} \mathrm{dt}-\mathrm{mgdt} \quad \text { but } \mathrm{m}=\mathrm{m}(\mathrm{t})! \\
& =-\mathrm{v}_{\mathrm{ex}} \mathrm{dm}-\mathrm{mgdt}
\end{aligned}
$$

$$
\mathrm{dv}=-\mathrm{v}_{\mathrm{ex}}(\mathrm{dm} / \mathrm{m})-\mathrm{g} d \mathrm{dt}
$$

Integrate

$$
d v^{\prime}=-v_{\mathrm{ex}}\left(\mathrm{dm} \mathrm{~m}^{\prime} / \mathrm{m}^{\prime}\right)-\mathrm{gdt}{ }^{\prime}
$$

$$
\begin{aligned}
\int_{0} \mathrm{v} d v^{\prime} & =-\mathrm{v}_{\mathrm{ex}} \int_{\mathrm{m} 0} \mathrm{~m} \mathrm{dm}^{\prime} / \mathrm{m}^{\prime}-\mathrm{g} \int_{0}^{\mathrm{t}} \mathrm{dt}^{\prime} \\
\mathrm{v}(\mathrm{t}) & =\mathrm{v}_{\mathrm{ex}} \ln \left[\mathrm{~m}_{0} / \mathrm{m}(\mathrm{t})\right]-\mathrm{gt}
\end{aligned}
$$

Also, $\mathrm{m}(\mathrm{t})=\mathrm{m}_{0}-\mathrm{Kt} \quad$ (assuming K is constant)

Graph of v as a function of t
(1) Slope $\sim\left(\mathrm{v}_{\mathrm{ex}} \mathrm{K}-\mathrm{m}_{0} \mathrm{~g}\right) / \mathrm{m}_{0}$
(2) rocket runs out of fuel
(3) slope $=-\mathrm{g}$
(4) rocket starts to fall downward

Area under the curve = max. height

