Section 3.2 Rockets

Read Section 3.2.

The rocket contains a fuel that burns rapidly. As the exhaust gas is expelled from the combustion chamber, there is a reaction force on the rocket; **"thrust"**.

Figure 3.2 A rocket of mass *m* travels to the right with speed v and ejects spent fuel with exhaust speed v_{ex} relative to the rocket.

Now analyze the motion, using the principle of momentum, i.e.,

$$\dot{\mathbf{P}} = \mathbf{F}^{\text{ext}}$$
 . eq. (3.1)

But be careful to identify **P** correctly!

(Dot[•] means d/dt)

<u>Derive the equation of motion for the</u> <u>rocket.</u>

What I mean by the "rocket" is the metal cylinder plus the fuel <u>inside</u>.

The mass of the rocket decreases as fuel is expelled out the back.

Let m(t) = the mass of the rocket

at time t;

 $m(t) = M_{cyl} + M_{fuel inside}(t)$

The equation of motion will depend on two parameters of the rocket engine. • Let v_{ex} = the *relative speed* of the exhaust gas. Understand this:

The velocity of the exhaust gas at time t is $v(t) - v_{ex}$, where v(t) is the velocity of the rocket.

Let K = the mass rate of the exhaust gas. K is positive. Understand this:

 $K = - dM_{F} / dt = - dm/dt$

I.e., K δt = the mass of fuel
expelled by the engine during the
time δt
= the decrease of the rocket mass
during δt. (units of K: kg/s)

Consider the change of momentum of the system = *rocket and fuel*, from time *t* to time $t + \delta t$. The total momentum at time *t* is

 $P(t) = m(t) v(t) + P_{fuel already expelled before t}$

(I'm only considering onedimensional motion of the rocket.)

The total momentum at time $t + \delta t$ is

 $P(t + \delta t) = m(t + \delta t) v(t + \delta t) \leftarrow rocket at t+dt$

+ (K δt) [V(t) - V_{ex}] \leftarrow fuel expelled during dt

+ P fuel already expelled before t

$$= (m + \delta m)(v + \delta v) + (K \ \delta t) (v - v_{ex}) + P_{already}$$
$$\delta m = -K \ \delta t \qquad DERIVE IT \ YOURSELF$$

(Because I will take δt to be infinitesimal, it does not matter if I take the exhaust speed during δt to be $v(t) - v_{ex}$ or $v(t+\delta t) - v_{ex}$ or something in between.)

The *change* of total momentum = δP = P(t+ δt) – P(t).

Now, the equation of motion follows from the theorem, $dP/dt = F^{ext}$.

 $\therefore F^{\text{ext}} = \lim \left[P(t+\delta t) - P(t) \right] / \delta t \qquad (\delta t \to 0)$

= [(m – K δt) (v+ δv) + K δt (v – v_{ex}) – mv]/ δt

= [m
$$\delta v - K \delta t v + K \delta t (v - v_{ex}) + O(\delta^2)]/\delta t$$

 $= m dv/dt - K v_{ex} \quad \text{in the limit } \delta t \to 0.$

Note the cancellations!

The rocket equations

For a rocket moving in one dimension, the velocity v(t) obeys

$$m \frac{dv}{dt} = K v_{ex} + F^{ext}$$
 (1)

where v_{ex} = the relative speed of the exhaust and K = the mass rate of the exhaust. Here m(t) is the mass of the rocket including enclosed fuel, so

$$\frac{\mathrm{dm}}{\mathrm{dt}} = -\mathrm{K} \tag{2}$$

Thrust force =
$$K v_{ex}$$
.

<u>Example. A rocket in deep space with</u> <u>constant values</u> of v_{ex} and K ...

Let the initial velocity be v_0 and the initial mass be m_0 .

Calculate the velocity at time t.

By eq.(2), $m(t) = m_0 - K t$ Then eq.(1) is

 $(m_0 - K t) (dv / dt) = K v_{ex}$ Using separation of variables, $dv = K v_{ex} / (m_0 - K t) dt$;

integrate both sides of the equation, $v - v_0 = -v_{ex} [ln (m_0 - Kt) - ln(m_0)]$

 $v = v_0 + v_{ex} ln [m_0 / (m_0 - K t)]$

Example #2. A rocket in deep space with constant v_{ex} and arbitrary time dependence , K(t)

Let the initial velocity be v_0 and the initial mass be m_0 .

Calculate the velocity at time t.

Result: $v = v_0 + v_{ex} ln [m_0 / m(t)]$

Proof:

$$v = v_0 + v_{ex} ln [m_0] - v_{ex} ln [m(t)]$$

Calculate du/dt = - U x m $m \frac{dv}{dt} = K \mathbf{b}_{\mathbf{e}_i}$ Which is correct because FEA = 0 in deep space.

Graph of velocity versus time for constant K .

Take off from Earth's surface m dv = Kvex - mg Approximate g= constant and Usx = constant. Separation of variables m du = K vex dt - mg dt $dv = v_{\mathrm{fx}}\left(\frac{-dm}{m}\right) - g dt$ $dv' = v_{ex} \left(-\frac{dn'}{m'} \right) - g dt'$ Integrate t'= indermediate time E (0, t) $\int_{0}^{U} dU' = U = \int_{0}^{m} U_{ex} \left(\frac{-Av_{m}}{m'} - \int_{0}^{t} g dt' \right)$ U(t) = Vex ln mo - gt A (so, m(+) = mo - Kt if K is constant. A successful take-off requires Kvex > mg i.e. thrust > weight

Graph of v as a function of t

(1) slope = acceleration
(2) runs out of fuel
(3) still rising but a = -g
(4) max height

= area under the curve A more difficult example:

Fire a rocket to the stars

Now g is not constant. As the distance from the earth increases, g decreases;

 $g(r) = g_s R_E^2 / r^2$ for $r > R_E$.

The equation of motion is

$$m \frac{dv}{dt} = K v_{ex} - m g_g \frac{R_e^2}{r^2}$$

AKE OFF FROM EARTH'S SURFACE

We have $m (dv/dt) = K v_{ex} - mg$ Approximate g = constant and $v_{ex} = constant$. How to integrate the diff. eq.?

$$m \, dv = K \, v_{ex} \, dt - mg \, dt \qquad but \, m = m(t) \, !$$

$$= - v_{ex} \, dm - mg \, dt$$

$$dv = - v_{ex} \, (dm \, /m) - g \, dt$$

$$dv' = - v_{ex} \, (dm' \, /m') - g \, dt'$$

$$\int_{0}^{v} dv' = - v_{ex} \int_{m0}^{m} dm' / m' - g \int_{0}^{t} dt'$$

$$v(t) = v_{ex} \, ln \, [m_{0} \, /m(t)] - gt$$
Also, m(t) = m_{0} - Kt (assuming K is constant)

Graph of v as a function of t

(1) Slope ~ $(v_{ex}K - m_0g)/m_0$ (2) rocket runs out of fuel (3) slope = -g(4) rocket starts to fall downward

Area under the curve = max. height

