Physics 422/820 - Fall 2015

Homework \#5, Due at beginning of class Friday Oct 9 .

1. N particles of equal mass M slide freely on a circle. They are connected by N springs with equal spring constant K. Use coordinates q_{1}, \ldots, q_{N} which are measured from the equilibrium positions, so you don't care about the unstretched lengths. Feel free to use the natural units $M=1$ and $K=1$. You may prefer to do the $N=6$ case first, because its greater symmetry makes it easier than the $N=5$ case. But both problems can be solved by thinking about what the solutions must look like, rather than using brute force with the T and V matrices.
Several of the normal modes here involve degeneracy; i.e., two or more of the ω_{i} values can be equal to each other. Another way to say that, is that there can be more than one independent amplitude vector $A^{(i)}$ corresponding to some particular mode frequency ω. When that happens, each amplitude vector can be replaced by a linear combination of all of the amplitude vectors for that frequency.
To obtain unique answers to these problems in the case of degeneracy, use the linear-combination freedom to make at least one of the elements of each $A^{(i)}$ equal to 0 whenever you can.
(a) [10 pts] Find the natural mode frequencies ω_{i} for $i=1, \ldots, N$ and their corresponding amplitudes $\left(A_{1}^{(i)}, \ldots, A_{N}^{(i)}\right)$ for $N=5$.
(b) $[10 \mathrm{pts}]$ Find the natural mode frequencies ω_{i} for $i=1, \ldots, N$ and their corresponding amplitudes $\left(A_{1}^{(i)}, \ldots, A_{N}^{(i)}\right)$ for $N=6$.
