Physics 422/820 - Fall 2015

Homework \#7, Due at beginning of class Friday Oct 23.

1. [6 pts] A homogeneous cube with sides of length S is balanced on one edge. Given an infinitessimal push, it falls over onto one side. Assuming that the edge in contact with the table never slips, find $\dot{\theta}$ as a function of θ by energy conervation.
2. [7 pts] In a particular coordinate frame, the moment of inertia tensor of a rigid body is

$$
\mathbf{I}=\left(\begin{array}{ccc}
3 & 4 & 0 \\
4 & 9 & 0 \\
0 & 0 & 10
\end{array}\right)
$$

in some units. The instantaneous angular velocity vector in that frame is given by $\omega=(2,3,4)$ in some units.
(a) Find the principal moments of inertia.
(b) Find a rotation matrix a that transforms to a new coordinate system in which the moment of inertia tensor is diagonal.
(c) Find the moment of inertia tensor \mathbf{I}^{\prime} and the angular velocity vector ω^{\prime} in the new coordinate system.
(d) Compute the kinetic energy and the magnitude of the angular momentum in both frames, and compare the results.
3. [7 pts] The matrix a is orthogonal

$$
a=\left(\begin{array}{rrr}
0.0637 & -0.7944 & 0.6040 \\
0.9448 & 0.2429 & 0.2198 \\
-0.3214 & 0.5567 & 0.7660
\end{array}\right)
$$

(a) Find ϕ, θ, ψ to write this in the form $a=R_{z}(\phi) R_{y}(\theta) R_{z}(\psi)$. (Hint: a good way to do this is to examine $\hat{e}_{3} \cdot a \cdot \hat{e}_{3}$ first; then $\hat{e}_{1} \cdot a \cdot \hat{e}_{3}$ and $\hat{e}_{2} \cdot a \cdot \hat{e}_{3}$; then \ldots you get the idea.
(b) Find the axis that a rotates about. (Hint: the rotation doesn't do anything to its axis, so the axis must be an eigenvector with the obvious eigenvalue.)
(c) Find the magnitude of the rotation angle in degrees. (Hint: You could choose an arbitrary vector that is perpendicular to the rotation axis and use the matrix a to rotate that vector; then examine the dot product between the original vector and its rotated form. Or you could use a trick based on looking at the trace of the matrix a.)

