Homework \#10, Due at beginning of class Friday Nov 13.

1. [8 pts] A particle of mass M is moving under the influence of a central force

$$
F(r)=-\frac{\alpha}{r^{2}}-\frac{\beta}{r^{4}}
$$

where $\alpha>0$ and $\beta>0$. It has angular momentum ℓ.
(a) Find the potential $V(R)$ and write the kinetic energy using polar coordinates.
(b) Find the minimum value of ℓ for which circular orbits ($r=$ const) are possible.
(c) Sketch $V_{\text {eff }}(r)$ for the three possible cases: (1) where no circular orbits are possible; (2) where only one circular orbit is possible; and (3) where more than one circular orbit is possible.
(d) If only one circular orbit is possible, is it stable or unstable? (Explain why.)
2. [8 pts] (P. W. Johnson problem 6.1) A particle moves under the influence of a central potential $V(r)$ where $V(r) \rightarrow 0$ in the limit $r \rightarrow \infty$.
(a) Show that if the particle moves along the curve $r^{2}=a^{2} \cos (2 \theta)$ then the potential is given by $V(r)=-\ell^{2} a^{4} /\left(2 M r^{6}\right)$.
(b) Find the velocity of the particle as a function of r.
(c) Find the time taken for the particle to travel from $r=a$ to $r=0$.
(Johnson gives answers for parts (b) and (c), but one or both of those answers might be wrong.)
3. [4 pts] A particle of mass M moves under the influence of a repulsive spherically symmetric force defined by the potential

$$
V(r)=\frac{A}{r^{2}}
$$

where $A>0$. Find r as a function of time if the total energy is E and the angular momentum is ℓ. (E and ℓ are of course constants of the motion.)

