Physics 422/820 - Fall 2015

Homework \#11, Due at beginning of class Friday Nov 20.

1. [5 pts] Consider the motion of a charged particle in a time-independent magnetic field. The Hamiltonian is

$$
H=\frac{1}{2 M}(\vec{p}-e \vec{A})^{2} .
$$

(a) Find the Lagrangian as a function of its correct variables \vec{r} and $\dot{\vec{r}}$. (This was worked out in lecture.)
(b) Let the magnetic field \vec{B} be given by the field due to a long straight wire carrying a current i. You know its form from first-year physics. Find the corresponding magnetic vector potential \vec{A}, which is defined by $\vec{B}=\vec{\nabla} \times \vec{A}$. By making a convenient choice of gauge, you can assume \vec{A} points in the \hat{z} direction, where \hat{z} points along the direction of the current.
(c) Find the Lagrangian for this field, using the cylindrical coordinates $x=r \cos \phi, y=r \sin \phi, z=z$.
(d) Use this new Lagrangian to find the Hamiltonian as a function of its correct variables.
(e) Your Hamiltonian gives you three independent constants of the motion. Use those constants to write an Effective Potential equation which relates \dot{r} to a function of r.
2. [5 pts] (Based on an incorrect problem in Goldstein.) The Lagrangian for a system can be written as

$$
L=a \dot{x}^{2}+b \dot{y} / x+f y^{2} \dot{x} \dot{z}+g \dot{y}^{2}+k \sqrt{x^{2}+y^{2}},
$$

where a, b, f, g and k are constants.
(a) Find the Hamiltonian.
(b) Write the Hamiltonian equations of motion; but you do not need to solve them.
(c) What are the conserved quantities? (Note that the Hamiltonian gives you one more conserved quantity than the Lagrangian does.)
3. [5 pts] (Based on a problem in Goldstein.) The Lagrangian for a system with one degree of freedom is

$$
L=\frac{M}{2}\left(\dot{q}^{2} \sin ^{2} \omega t+\dot{q} q \omega \sin 2 \omega t+q^{2} \omega^{2}\right)
$$

where M and ω are constants
(a) Find the Hamiltonian as a function of its correct variables.
(b) Is this Hamiltonian conserved? (State why or why not.)
(c) Find the new Hamiltonian that is obtained by introducing a new coordinate defined by $Q=q \sin \omega t$. (You will first need to find the new Lagrangian.)
(d) Use the new Hamiltonian to solve for $Q(t)$ and hence find the most general solution $q(t)$ for the motion according to the original Lagrangian.
4. [5 pts] (Based on an old MSU Subject Exam problem.) A particle of mass M slides without friction inside the surface of a frictionless paraboloid of revolution $z=A\left(x^{2}+y^{2}\right)$ where $A>0$ is a constant. The symmetry axis z of the paraboloid is vertical, so there is a gravitational force in the $-\hat{z}$ direction. Use r and ϕ as generalized coordinates, where $x=r \cos \phi$ and $y=r \sin \phi$.
(a) Find the Hamiltonian and use it to find the Hamiltonian equations of motion.
(b) How many constants of the motion did you find?
(Last updated 11/14/2015.)

