Physics 422/820 - Fall 2016

Homework \#6, Due at beginning of class Friday Oct 14.

1. [10 pts] N particles, where N is even, slide freely on a circle. They are connected by N springs of equal spring constant K which connect each neighboring pair of particles. The masses alternate between two values: $M_{1}=M_{3}=\ldots=M_{N-1}$ and $M_{2}=M_{4}=\ldots=M_{N}$.
Use coordinates q_{1}, \ldots, q_{N} that are measured from the equilibrium positions, so you don't care about the unstretched lengths. Feel free to use the natural unit $K=1$.

Find the normal mode frequencies ω_{i} for $i=1, \ldots, N$ and their corresponding amplitudes $\left(A_{1}^{(i)}, \ldots, A_{N}^{(i)}\right)$ vectors for the case $\mathbf{N}=6$, with $\mathrm{M}_{1}=\mathrm{M}_{3}=\mathrm{M}_{5}=3$, and $\mathrm{M}_{2}=\mathrm{M}_{4}=\mathrm{M}_{6}=8$.
I can think of three ways to do this problem:
(a) Most elegantly: solve the problem for arbitrary even integer N, by solving a difference equation using the method shown in lecture, and then set $N=6$ in your answer;
(b) Use symmetry arguments and orthogonality (relative to the Kinetic Energy matrix) arguments to work out the normal modes one at a time;
(c) Directly use the Lagrangian method.

For full credit, you must use at least two of these methods, and check that you get the same answer both ways.
2. [5 pts] A solid cone has height H and circular base of radius R. It has mass M, but its mass distribution is not uniform: using cylindrical coordinates with the z direction along the symmetry axis of the cone, with the pointy end of the cone at $z=0$ and the circular base at $z=H$, the mass per unit volume is proportional to z. Find its principal moments of inertia about its center of mass. (Hint: first find the moments of inertia about the pointy end, which makes the integrals simple; then use the parallel axis theorem.)
3. [5 pts] Find the principal moments of inertia about the center of mass for a solid hemisphere (half of a sphere - e.g., the half north of the equator) with a uniform mass distribution. Do this problem in two ways:
(a) The dumb way: just do the integrals using spherical coordinates.
(b) The smart way: use your knowledge of the moments of inertia of a full sphere and the parallel axis theorem. (You still have to do one integral to locate the center of mass.)

