Physics 422/820 - Fall 2016

Homework \#7, Due at beginning of class Friday Oct 21.

1. [8 pts] A homogeneous cube with sides of length S is balanced on one edge. Given an infinitessimal push, it falls over onto one side.
(a) Assuming that the edge in contact with the table never slips, find $\dot{\theta}$ as a function of θ by energy conservation.
(b) Find the minimum coefficient of friction that is necessary to keep it from slipping.
2. [6 pts] Three point masses are rigidly attached to each other by massless rods:

$$
\begin{aligned}
& m_{1}=1 M \text { at } \quad(x, y, z)=(-B, B, 0) \\
& m_{2}=2 M \text { at } \quad(x, y, z)=(B, 0, B) \\
& m_{3}=3 M \text { at } \quad(x, y, z)=(B, B,-B)
\end{aligned}
$$

(a) Find the inertia tensor for rotations about the point $(x, y, z)=(0,0,0)$.
(b) Find the principal moments of inertia for rotations about the point $(x, y, z)=(0,0,0)$.
(c) Find the principal axes for rotations about the point $(x, y, z)=(0,0,0)$.
3. [6 pts] In a particular coordinate frame, the moment of inertia tensor of a rigid body is

$$
\mathbf{I}=\left(\begin{array}{ccc}
3 & 4 & 0 \\
4 & 9 & 0 \\
0 & 0 & 10
\end{array}\right)
$$

in some units. The instantaneous angular velocity vector in that frame is given by $\omega=(2,3,4)$ in some units.
(a) Find the principal moments of inertia.
(b) Find a rotation matrix a that transforms to a new coordinate system in which the moment of inertia tensor is diagonal.
(c) Find the moment of inertia tensor \mathbf{I}^{\prime} and the angular velocity vector ω^{\prime} in the new coordinate system.
(d) Compute the kinetic energy and the magnitude of the angular momentum in both frames, and compare the results.

