Physics 422/820 - Fall 2016

Homework \#9, Due at beginning of class Monday Nov 7

1. [10 pts] A carousel (a fancy merry-go-round) begins to rotate at time $t=0$. Its angular velocity of rotation is given by

$$
\Omega=\frac{\omega_{0} t}{t+t_{0}}
$$

where ω_{0} and t_{0} are constants. A person of mass M is sitting on one of the carved wooden horses, at a distance R from the center of the rotating platform.
(a) Find the component of force on the person in the radial direction as a function of time by using Newton's laws in the inertial (non-rotating) frame.
(b) Find the component of force on the person in the tangential direction as a function of time by using Newton's laws in the inertial (non-rotating) frame.
2. [10 pts] Repeat problem 1 but this time work in the rest frame of the rotating carousel, using the inertial forces derived in class:

$$
\mathbf{F}_{\text {eff }}=\mathbf{F}-\mathbf{M} \dot{\omega} \times \mathbf{r}-\mathbf{M} \omega \times(\omega \times \mathbf{r})-2 \mathbf{M} \omega \times \dot{\mathbf{r}}
$$

