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. Method for removing parametrization
dependence: revised arXiv:0909.5176 to be
published in PRD

. Negative gluon distribution at small x7



PDF parametrizations
Typical recent gluon parametrization (CT10)
z g(z, po) = agz™ (1 — z)%2 eP(?)

where

p(z) = azv/z + agz + asz®

e Power-law dependence at z — 0 (Regge)
(However, NLO DGLAP doesn’'t do well by
Regge theory.)

e Subleading terms down by ~ 292 at z — 0
(Regge)

e Spectator counting form at x — 1

e g(x) positive definite (However, possibly too
strong)

New method
12 _
p(z) = 3 bjal/?
J=1
Problems: How to obtain smooth, stable fits with so
many parameters...



Chebyshev Polynomial method

Replace the fitting parameters {b;} by equivalent
parameters {c;} where

12 . 12
p(z) = 3 b;2i/?2 = Y ¢;Ti(y)
j=1 =1

where y = 1 — 24/ maps the physical region
O<z<lto —l<y<l.

To(y) =1, Ti(y) =y Th41(y) =2yTn(y) —Tn-1(y)

T;(y) = cos(j0) where y = cosé.

T;(y) has extreme values of £1 at the endpoints and
at 7 — 1 points in the interior of the physical region
O<xz<1. Chebyshev polynomials of increasingly
large 5 thus model structure at an increasingly fine
scale in x.



Smoothness penalties

The Chebyshev parametrizations can easily take on
more fine structure in x than is plausible in the
nonperturbative physics that is being described. To
avoid this, we add a penalty to x?

Observe that the classic form

f(z) = agz™ (1 —z)*2,
surely embodies the appropriate smoothness.
This has

x(l—xz)d(nf)/de = a1 — (a1 + an)x

is linear in . Hence it is natural to define

Pu(x) = (1 —z)d(n fu)/dz
1 (d2dy\”
/:131 <daf;2> da

Add Y, Cy S, to x2, with the weights C, chosen to
increase the overall x2 by ~ 5.

Sa




Results
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Wide shaded region: fractional uncertainty from
CT10 (26 fitting parameters)

Narrow shaded regions: uncertainty for AX2 = 10.

Solid curve: Chebyshev fit with 84 free parameters
2 lower than CT10 by 105.

21 better for BCDMS up — uX,
16 better for BCDMS ud — uX,
17 better for HERA combined set

Dashed and Dotted curves: Chebyshev fits with
different behaviors at large z, XQ within 5 of best fit.



Ratio to reference fit

Results at © = 100 GeV
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Parametrization effects are important at high scale,
even for u(x) which has nominally small uncertainty.



Results at large «
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Wide shaded region: fractional uncertainty from
CT10 (26 fitting parameters)

Solid curve: Chebyshev fit with 84 free parameters.

Dashed and Dotted curves: Chebyshev fits with
different behaviors at large z, XQ within 5 of best fit.



Various possibilities at large x

Red = up quark
Blue = down quark

Green = gluon

As Jeff Owens remarked, the different versions agree
quite well for x < 0.6 where there are direct
constraints from data. In principal, the very large «
region is constrained by data at higher scales, since
it feeds down to lower x at large u; but this
constraint is weak because the absolute PDFs are so
small at large =x.



