
PDF reweighting in global fits

Contribution to LPC workshop
“Confronting Theory with Experiment: Puzzles,
Challenges and Opportunities in the LHC Era”

(Fermilab Nov 17–18, 2011)

Jon Pumplin - Michigan State University
John Collins - Pennsylvania State University

The goal of this talk is to explain how PDF

reweighting would be done in the traditional Hessian

method for PDF fitting. The result appears to

contradict the method used in recent NNPDF work.

1. Review of the Hessian method

2. Influence of a new data set

3. Monte Carlo implementation

4. Contrast with NNPDF prescription

5. Explicit example
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Hessian method: Best Fit

The PDFs are characterized by “shape parameters”

a1, . . . , aN that parametrize the x-dependence for

each flavor at a chosen evolution starting scale µ0.

(N ∼ 25 in current CTEQ fits; but N as large as 80

has been used to study parametrization dependence

effects.)

Best-Fit values a
(0)
1 , . . . , a

(0)
N are found by minimizing

χ2 for a fit to a large “global” set of data (∼ 3000

data points).

2



Hessian method: Uncertainty range

In the neighborhood of the minimum, χ2 has a

quadratic form

χ2 = χ2
min +

∑

ij

Hij (ai − a
(0)
i ) (aj − a

(0)
j )

where H is the Hessian matrix (inverse error matrix).

Expressing the displacements ai − a
(0)
i as linear

combinations of the eigenvectors of the real

symmetric matrix H introduces new coordinates

z1, . . . , zN such that

ai = a
(0)
i +

∑

j

wij zj

with χ2 taking the very simple form

χ2 = χ2
min +

∑

i

z2
i .

Using these coordinates, the PDF determination can

be thought of as a measurement of N uncorrelated

variables with result

zi = 0 ± 1 (i = 1, . . . , N)
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New experiment with one new data point

Prior to including a new experiment, our knowledge

of the PDFs is described by the probability

distribution

dP

dz1 · · · dzN
= const × exp[−(z 2

1 + . . . + z 2
N)/2] (1)

i.e.,

z1 = 0 ± 1, . . . , zN = 0 ± 1 .

A single new data point will measure some linear

combination of the parameters z1,. . . ,zN . But Eq.(1)

is invariant to an arbitrary orthogonal transformation

of the {zi}. We can use that freedom to redefine the

{zi} so that the new measurement is sensitive only

to z1. Hence without loss of generality, the new

measurement can be assumed to have the form

z1 = A ± B .
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Including one new data point

Assuming Gaussian statistics, we can combine the

new measurement with the old using the standard

formula from freshman physics lab:

z1 = 0 ± 1, z1 = A ± B

leads to

z1 =

1·0
12 + 1·A

B2

1
12 + 1

B2

±
√

√

√

√

1
1
12 + 1

B2

.

This result corresponds to
(

dP

dz1 · · · dzN

)

new

= const× exp(−χ2/2)×
(

dP

dz1 · · · dzN

)

old

where

χ2 =

(

z1 − A

B

)2

with
(

dP

dz1 · · · dzN

)

old

= const × exp[−(z 2
1 + . . . + z 2

N)/2]
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New experiment with two data points

Prior to including a new experiment, our knowledge

of the PDFs is described by the probability

distribution

dP

dz1 · · · dzN
= const × exp[−(z 2

1 + . . . + z 2
N)/2]

i.e.,

z1 = 0 ± 1, . . . , zN = 0 ± 1 .

Using the freedom to make an orthogonal

transformation of the Hessian parameters z1,. . . ,zN ,

we can assume without loss of generality that an

experiment which measures two new data points

tells us

z1 = A ± B

and

z1 cos θ + z2 sin θ = C ± D

where the parameter θ describes the extent to

which the two data points measure the same or

different aspects of the PDFs.
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Two data points – continued

For the first new data point, the measurements

z1 = 0 ± 1 and z1 = A ± B can be combined as done

previously to yield z1 = E ± F .

Defining z̃1 = (z1 − E)/F with z̃2 = z2, z̃3 = z3, . . .

restores the symmetric form

dP

dz̃1 · · · dz̃N
= const × exp[−(z̃ 2

1 + . . . + z̃ 2
N)/2] .

The information from the other new data point can

then be included by the same elementary means.

The result is that the two new points

z1 = A ± B, z1 cos θ + z2 sin θ = C ± D

are found to modify the original probability

distribution to
(

dP

dz1 · · · dzN

)

new

= const× exp(−χ2/2)×
(

dP

dz1 · · · dzN

)

old

where

χ2 =

(

z1 − A

B

)2

+

(

z1 cos θ + z2 sin θ − C

D

)2
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New experiment with n data points

The result derived here explicitly for a new

experiment with 1 or 2 data points can be

generalized to the case of a new experiment with n

data points. The result is that the original

probability distribution
(

dP

dz1 · · · dzN

)

old

= const × exp[−(z 2
1 + . . . + z 2

N)/2]

gets multiplied by e−χ2
new/2, where χ2

new is just the

usual chisquared measure of agreement with the new

data set for the PDFs defined by z1,. . . ,zN .

In principle, this result could be used to facilitate the

inclusion of new data sets in traditional PDF

analysis. There is no strong incentive for the PDF

collaborations like CTEQ to do that, because it is

easy enough to redo the minimization and Hessian

error analysis from scratch for the enlarged data set;

and that method is superior to the extent that χ2

depends somewhat non-quadratically on the fitting

parameters.

However, the result becomes important theoretically

when we consider a Monte Carlo method for

implementing the error analysis.
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Monte Carlo Method

PDF uncertainties on a prediction such as a Higgs

cross section could be obtained by an obvious Monte

Carlo method: one could generate a large number of

PDF sets from the probability distribution
(

dP

dz1 · · · dzN

)

= const × exp[−(z 2
1 + . . . + z 2

N)/2] .

Then compute the Higgs cross section for each of

the generated configurations. The mean and

standard deviation of these computed cross sections

would directly yield the central value and 1-sigma

limits of the prediction.

The effect of including a new data set in the global

fit could be found in principle by computing χ2
new for

the new data set for each of the generated

configurations, and keeping that configuration with

probability exp(−χ2
new/2). That procedure is not

promising as a practical method, however, since χ2
new

will generally be on the order of the number of new

data points, so if there are many new data points,

only a tiny fraction of the original PDF samples

would be retained.
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NNPDF paradox

The NNPDF method also produces a large sample of

PDFs whose distribution is supposed to model the

probability distribution corresponding to the

knowledge that can be extracted from the input data

sets. That sample can be used to predict central

values and uncertainties in the same manner as the

Hessian Monte Carlo method sketched here.

However, the rule for modifying the Monte Carlo

sample to incorporate a new experiment is claimed

to be to keep configurations according to a

probability proportional to

(χ2
new)n−1 exp(−χ2

new/2)

where n is the number of points in the new data set.

The extra factor (χ2
new)n−1 would be wonderful if it

is correct, because it circumvents the practical

difficulty that without it, almost all of the original

PDF samples are rejected.

However, we do not see how this factor can be

correct, in view of its conflict with the simple

calculation described here in the context of the

Hessian method.
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Explicit example

Suppose the “old” data measures two uncorrelated

variables:

z1 = 0 ± 1, z2 = 0 ± 1 .

Hence the “old” probability distribution is

dP

dz1 dz2
= const × exp[−(z 2

1 + z 2
2 )/2] .

Suppose the “new” data consists of two

measurements:

z1 = 1 ± 1, z1 + z2 = 1 ± 1 .

The fit to all four constraints has

χ2 =

(

z1 − 0

1

)2

+

(

z2 − 0

1

)2

+

(

z1 − 1

1

)2

+

(

z1 + z2 − 1

1

)2

The Hessian approach leads to the transformation

z1 =
3

5
+

√

1

5
u1 +

√

1

5
u2

z2 =
1

5
+

1

2



1 −
√

1

5



u1 +
1

2



−1 −
√

1

5



u2
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After the transformation (whose Jacobian is a

constant), we have

χ2 =
3

5
+ u2

1 + u2
2

Hence

u1 = 0 ± 1 and u2 = 0 ± 1

dP

du1 du2
= const × exp[−(u2

1 + u2
2 )/2] .

The ratio of the new probability density to the old is

proportional to

exp[−(u2
1 + u2

2 )/2]

exp[−(z 2
1 + z 2

2 )/2]

By explicit calculation, this is equal to exp[−χ2
new/2]

where χ2
new is just the expected contribution from

the two new data points:

χ2
new =

(

z1 − 1

1

)2

+

(

z1 + z2 − 1

1

)2

.
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Conclusion

Hence in this simple example, refitting the combined

data set is explicitly found to be equivalent to

reweighting the probability distribution from the

original data set by

exp(−χ2
new/2)

without any additional factor of

(χ2
new)n−1 .

The ensemble of PDFs created in the NNPDF

method is constructed in a different way than the

Hessian method: each member of the ensemble can

be thought of as a best fit to a “fake” data set

whose error bars are the same as the real data, with

the central values shifted randomly according to

those errors. But – even after a number of clarifying

e-mail exchanges – we do not see how the extra

weight factor (χ2
new)n−1 can be correct.
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Notes added after talk

1) The “Standard” reweighting factor exp[−χ2/2] is

presumably the same that is used in the papers of

Giele and Kosower.

2) The “extra” factor (χ2)n−1 looks like a volume

density factor like the r2 factor in 4π r2 dr that

appears in 3-dimensional phase space. For example,

the probability distribution

dP

dz1 · · · dzN
= const × exp[−(z 2

1 + . . . + z 2
N)/2]

implies a distribution of R2 = z 2
1 + . . . + z 2

N of the

form
dP

dR
= const × RN−1 exp[−R2/2] .

This implies that R2 has mean N with standard

deviation
√

2N .
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