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Proton Collider experiments

Experiments in particle physics use collisions of high

energy protons (and/or antiprotons). New champion

is the Large Hadron Collider (near Mont Blanc):

Protons with an energy of 7000mc2 travel in both

directions around the 27km tunnel, and collide inside

elaborate particle detectors:
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Parton Distribution Functions

Protons are a complicated quantum mechanical

system made up of a large (indeterminant) number

of “partons”: the quarks u, d, s, c, b, t; their

corresponding antiquarks; and gluons.

(You may have thought that the proton is composed of just 3

quarks. But consider the hydrogen atom which you may

imagine as made of just a proton and an electron. The Lamb

Shift taught us that there are also photons and e+e− pairs in it,

with probabilities that are small because αEM is small. The αs

of the quark and gluon interactions is large, so multiparton

states in the proton have large probabilities.)

Theorems from the theory of partons (Quantum

Chromodynamics) show that the most interesting

“hard” interactions between two colliding protons are

dominated by collisions in which a single parton from

one proton strikes a a single parton from the other.

The calculations needed to interpret data from

collider experiments thus depend on knowing the

probability density functions (PDFs) u(x), ū(x),

d(x),. . . that describe the probability for finding a u,

ū, d,. . . in the proton with fraction 0 < x < 1 of the

proton’s momentum.

3



Technical detail: Parton evolution

The parton distributions actually depend on two

variables: the fraction x of the momentum of the

proton that the parton is carrying, and the QCD

factorization scale µ which is the

quantum-mechanical conjugate to the distance scale

of the interaction.

But the variation with µ can be calculated by

perturbation theory. Also c, b, t can be assumed

negligible at a low scale; so only 6 or 7 functions of

the single variable x need to be determined.

As an added bonus, the evolution to large µ – where

the most immediately interesting LHC physics lies –

tends to smooth out fluctuations in the PDFs at the

scale where the parametrizations are made, so any

artificial structure there is not so important.
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Parametrizations

To extract functions of x from a finite set of

measurements with finite errors would appear to be

an ill-posed mathematical problem.

However, there is good reason to think that the

PDFs should be very smooth functions, so it is

possible to parametrize them. Quantum

Chromodynamics helps this because any fine

structure tends to get washed out under the

evolution to hard scales.

Typical form: a0 xa1 (1− x)a2 exp(a3x + a4x2 + a5
√

x)

This is sufficiently flexible to handle the accuracy of

current data, while building in positivity and known

or expected behaviors at x → 0 and x → 1.

Modern PDF analyses use a total of ∼ 25

parameters to describe the full set of functions. The

number of parameters that can be used increases

with time, as new data become available to

constrain them. Hence the analysis always has some

parameters that are poorly constrained, which causes

non-quadratic behavior of χ2 close to the minimum.
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Alternative parametrizations

To study and/or reduce the bias caused by choosing

a form of parametrization, I have also recently been

studying fits based on Chebyshev polynomials.

These fits use 70 free parameters, with a penalty

added to χ2 to enforce smoothness.

Another alternative is to represent the PDF functions

by Neural Networks, which allow a very large number

of effective parameters — see Robert Thorne’s talk.
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Experimental input

The PDFs are “nonperturbative” features of proton

structure, which cannot in practice be calculated

from first principles (even though the widely

accepted “standard model” should in principle be

sufficient to determine them).

Hence the goal is to determine the PDF parameters

by simultaneously fitting data from the wide variety

of experiments that are sensitive to them. These

include experiments using e± p, µ± p, ν p, p̄ p, and p p

scattering, with a wide variety of final states that are

calculable by available techniques.

Currently, there are ∼ 35 useful data sets with a

total of ∼ 3000 data points. The quality of fit to

each data set is measured by a χ2
j defined by

χ2
j =

Nj
∑

i=1

(

datai − theoryi

errori

)2

(except for refinements to incorporate published

correlated systematic errors).
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Further explanation of χ2 definition

The goodness-of-fit to experiment j is measured by

χ2
j =

Nj
∑

i=1

(

datai − theoryi

errori

)2

as shown on the previous page.

datai is an experimentally reported data point, which

is based on on the experimenters counting the

number of events that fall into a particular kinematic

bin.

errori is the experimentally reported error, which may

come from Poisson statistics; but more often

involves estimates of systematic effects, since

experimenters tend to choose running time and bin

sizes to get the statistical counting errors down to

where they are comparable to estimates of unknown

systematic errors.

theoryi is the theory prediction – which is based on a

complicated QCD calculation, and hence is a

non-linear function of the parameters a1, . . . , a25

which parametrize the parton distributions that we

are trying to determine by the fitting procedure.
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Other choices for goodness of fit?

Our traditional measure of goodness-of-fit is given by

χ2
j =

Nj
∑

i=1

∆2
i

where

∆i =
datai − theoryi

errori

(We call this quantitity χ2 – which of course is not

sufficient to guarantee that it obeys a chi-squared

distribution.)

One could imagine preferring some other measure of

Gof, such as for example

χ2
j =

Nj
∑

i=1

log
(

1 + ∆2
i

)

which is similar for |∆i| . 1, but which more-or-less

gives up on points that disagree by a lot. Is there

any experience with this??
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The PDF “Global Fitting” paradigm

For any choice of the PDF parameters

a1, . . . , a25

we can compute the quality of fit to the data sets

χ2
1 , . . . , χ2

35

The goal is to find the PDF parameters {ai} that

yield acceptable fits to the data, as characterized by

{χ2
j } at various desired levels of confidence.

The “obvious” procedure is to define

χ2 =
35
∑

j=1

χ2
j

A Best Fit can be estimated by minimizing this χ2

with respect to a1, . . . , a25.

An Uncertainty Range can be found by accepting all

PDF sets in (a1, . . . , a25) space for which

χ2 < χ2
BestFit + ∆χ2

with ∆χ2 = 1 for 68.3% confidence, 2.71 for 90%

confidence, 6.63 for 99% confidence, etc.
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Trouble!

Up to this point, statisticians should be reasonably

happy with our procedures.

The problem we hope BIRS can help with arises

from the fact that the actual PDF uncertainties are

much larger than what is given by the prescription

“∆χ2 = 1”

Before showing how we know that, I will introduce

two useful tools:

• Lagrange Multiplier method

• Hessian method
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Lagrange Multiplier method

To find the PDF uncertainty on predictions for some

physical process, e.g., the cross section σ for Higgs

production at the LHC, you vary {ai} to minimize

F = χ2 + λσ

at a variety of values of the Lagrange Multiplier

parameter λ.

In this way, you map out χ2 as a function of σ.

That determines the uncertainty distribution for the

predicted σ — if you can decide on the range of ∆χ2

to accept.
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Hessian method

In the neighborhood of its minimum at

(a
(0)
1 , . . . , a

(0)
25 ), χ2 has a quadratic form

χ2 = χ2
min +

∑

ij

Hij (ai − a
(0)
i ) (aj − a

(0)
j )

where H is the Hessian matrix (inverse error matrix).

Expressing the displacements ai − a
(0)
i as linear

combinations of the eigenvectors of the real

symmetric matrix H introduces new coordinates

z1, . . . , z25 such that

ai = a
(0)
i +

∑

j

wij zj .

with χ2 taking the very simple form

χ2 = χ2
min +

∑

i

z2
i

Using these coordinates, the region of PDF

parameter space allowed by a given ∆χ2 is simply

the interior of a hypersphere.
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Eigenvector Uncertainty sets

χ2 = χ2
min +

∑

i

z2
i

implies that the region of PDF parameter space

allowed at a given ∆χ2 can be characterized by a

collection of Eigenvector sets:

(z1, z2, z3, . . . ) =































(+U1,0,0, . . . )
(−D1,0,0, . . . )
(0,+U2,0, . . . )
(0,−D2,0, . . . )
. . .

.

According to the quadratic approximation,

Ui = Di =
√

∆χ2. In practice, the individual values Ui

and Di are adjusted separately for each eigenvector

set to compensate for non-quadratic behaviors and

produce the desired ∆χ2 exactly.

Eigenvector Uncertainty Sets are extremely useful,

because they permit a simple calculation of the

expected uncertainty range for any observable.

The method is to compute the allowed deviation

from the best fit by adding the deviations allowed

along each eigenvector direction in

quadrature—separately for positive and negative

deviations to compute asymmetric errors.
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How we know that ∆χ2 must be large

1. Inconsistency between individual subsets of data

and the rest of the data: DSD method.

2. Inconsistency between individual subsets of data

and the best fit: Distribution of Sj.

3. Uncertainties caused by parametrization choice.

Each of these points will now be discussed in detail.

15



Data Set Diagonalization

Partition the data into two subsets:

χ2 = χ2
S + χ2

S
.

Subset S can be any one of the experiments, or all

experiments of a particular type that might be

suspected of an untreated systematic error; while S

is all the rest of the data.

The DSD method will answer the questions

1. What does subset S measure?

2. Is subset S consistent with the rest of the data?

The essential trick is that in the Hessian method,

the linear transformation that leads to

χ2 = χ2
0 +

N
∑

i=1

z 2
i

is not unique, because any further orthogonal

transform of the zi will preserve it. Such a

transformation can be defined using the eigenvectors

of the quadratic form corresponding to χ2
S. Then . . .
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χ2 = χ2
S + χ2

S̄ + const

χ2
S =

N
∑

i=1

[(zi − Ai)/Bi]
2

χ2
S̄ =

N
∑

i=1

[(zi − Ci)/Di]
2

Thus the subset S of the data and its complement S

take the form of independent measurements of the

N variables zi, with results

S : zi = Ai ± Bi

S : zi = Ci ± Di

This answers “What is measured by subset S?” —

it is the parameters zi for which the Bi ∼< Di. The

fraction of the measurement of zi contributed by S is

γi = D 2
i /(B 2

i + D 2
i ) .

The decomposition also measures the compatibility

between S and the rest of the data S: the

disagreement between the two is

σi = |Ai − Ci|/
√

(B 2
i + C 2

i ) .
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Experiments that provide at least one
measurement with γi > 0.1

Process Expt N
∑

i
γi

e+ p → e+ X H1 NC 115 2.10

e− p → e− X H1 NC 126 0.30
e+ p → e+ X H1 NC 147 0.37
e+ p → e+ X H1 CC 25 0.24

e− p → ν X H1 CC 28 0.13

e+ p → e+ X ZEUS NC 227 1.69

e+ p → e+ X ZEUS NC 90 0.36
e+ p → ν X ZEUS CC 29 0.55
e+ p → ν̄ X ZEUS CC 30 0.32
e− p → ν X ZEUS CC 26 0.12

µ p → µ X BCDMS F2p 339 2.21

µ d → µ X BCDMS F2d 251 0.90
µ p → µ X NMC F2p 201 0.49

µ p/d → µ X NMC F2p/d 123 2.17

pCu → µ+µ−X E605 119 1.52

pp, pd → µ+µ− X E866 pp/pd 15 1.92
pp → µ+µ− X E866 pp 184 1.52

p̄p → (W → ℓν)X CDF I Wasy 11 0.91

p̄p → (W → ℓν)X CDF II Wasy 11 0.16
p̄ p → jetX CDF II Jet 72 0.92
p̄ p → jetX D0 II Jet 110 0.68

ν Fe → µ X NuTeV F2 69 0.84

ν Fe → µ X NuTeV F3 86 0.61
ν Fe → µX CDHSW 96 0.13
ν Fe → µX CDHSW 85 0.11

ν Fe → µ+µ−X NuTeV 38 0.68
ν̄ Fe → µ+µ−X NuTeV 33 0.56
ν Fe → µ+µ−X CCFR 40 0.41
ν̄ Fe → µ+µ−X CCFR 38 0.14

Total of
∑

γi = 23 is close to the actual number of fit parameters.
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Consistency tests

Measurements that conflict strongly with the others
(σi > 3) are shown in red. There are lots of them!

Expt
∑

i
γi (γ1, σ1), (γ2, σ2), . . .

H1 NC 2.10 (0.72, 0.01) (0.59, 3.02) (0.43, 0.20) (0.36, 1.37)

H1 NC 0.30 (0.30, 0.02)
H1 NC 0.37 (0.21, 0.06) (0.16, 0.83)
H1 CC 0.24 (0.24, 0.00)

H1 CC 0.13 (0.13, 0.00)

ZEUS NC 1.69 (0.45,3.13) (0.42, 0.32) (0.35,3.20) (0.29, 0.80)

(0.18, 0.64)
ZEUS NC 0.36 (0.22, 0.01) (0.14, 1.61)
ZEUS CC 0.55 (0.55, 0.04)
ZEUS CC 0.32 (0.32, 0.10)

ZEUS CC 0.12 (0.12, 0.02)

BCDMS F2p 2.21 (0.68, 0.50) (0.63, 1.63) (0.43, 0.80) (0.34,4.93)

(0.13, 0.94)
BCDMS F2d 0.90 (0.32, 0.67) (0.24, 2.49) (0.19, 2.09) (0.16,5.22)

NMC F2p 0.49 (0.20,4.56) (0.17,4.76) (0.12, 0.50)
NMC F2p/d 2.17 (0.61, 1.11) (0.56,3.60) (0.43, 0.90) (0.36, 0.79)

(0.21, 1.41)

E605 DY 1.52 (0.91, 1.29) (0.38, 1.12) (0.23, 0.31)

E866 pp/pd 1.92 (0.88, 0.57) (0.69, 1.15) (0.35, 1.80)
E866 pp 1.52 (0.75, 0.04) (0.39, 1.79) (0.23, 1.94) (0.14,3.57)

CDF Wasy 0.91 (0.57, 0.33) (0.34, 0.51)

CDF Wasy 0.16 (0.16, 2.84)
CDF Jet 0.92 (0.48, 0.47) (0.44,3.86)

D0 Jet 0.68 (0.39, 1.70) (0.29, 0.76)

NuTeV F2 0.84 (0.37, 2.75) (0.29, 0.42) (0.18, 0.97)

NuTeV F3 0.61 (0.30, 0.50) (0.16, 1.35) (0.15, 0.30)
CDHSW 0.13 (0.13, 0.04)
CDHSW 0.11 (0.11, 1.32)
NuTeV 0.68 (0.39, 0.31) (0.29, 0.66)
NuTeV 0.56 (0.32, 0.18) (0.24, 2.56)
CCFR 0.41 (0.24, 1.37) (0.17, 0.12)
CCFR 0.14 (0.14, 0.79)

Only measurements that play a significant role (γi > 0.1) are listed.
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Quality of fits to individual data sets

Look at fit quality using equivalent normal

distributions. Simple way (R. Fisher, 1925),

S =
√

2χ2 −
√

2N − 1 has Mean ≈ 0 and SD ≈ 1,

and is nearly gaussian-distributed down to N as small

as 10, which is the smallest number of points in any

of our data sets:

Values of S corresponding to central probability 68%

(solid), 90% (dashed), and 98% (dotted).

S values can be used to conveniently compare fit

quality among experiments with different numbers of

data points.
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S-values for the 29 data sets in CT10

Smooth curve is gaussian with mean 0 and standard

deviation 1 – essentially the statistical prediction.

The observed histogram is broader than this

prediction, which demonstrates that the

uncertainties are not strictly gaussian.

The extreme outlier at negative S is CCFR F3, for

which we improperly added systematic errors in

quadrature, artificially reducing χ2.

The extreme outlier at positive S is NMC µ p data –

indicates “higher twist” effects??

Even without those two outliers, the distribution

appears to be broader than absolute Gaussian

(though I have not made a quantitative study of how

inconsistent it is).
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Other indications that PDF uncertainties
are larger than “∆χ2 = 1”

1. Space dependence: Different analysis groups

obtain significantly different results

2. Time dependence: Results from a single analysis

group change significantly as a result of minor

changes in the procedure, such as which data

sets are included.

3. Parametrization dependence: Results from a

single analysis group can change significantly as

a result of changes in the parametrizations, with

χ2 changing by ∼ 100.

Paradox emphasized by Louis Lyons: The PDF fits

have χ2/N ≈ 1. In detail, a typical recent fit (CT10)

has χ2 = 3015 for 2753 data points with 26 fitting

parameters. That is somewhat higher than the

N ±
√

2N expected range:

(2753 − 26) ±
√

2 (2753 − 26) = 2650 to2800

But expanding all of the experimental errors

uniformly by only 4% would reduce χ2 to

3015/1.042 = 2788 which lies within that range.
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Black: Latest CTEQ fit (arXiv:1007.2241 this week), with uncertainty

Red: Chebyshev fit with smoothness penalty – χ2 lower by ≈ 100.

Blue: Fit using Gof =
∑

S 2
j θ(Sj) – χ2 higher by ≈ 120.
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Black: Latest CTEQ fit (arXiv:1007.2241 this week), with uncertainty

Red: Chebyshev fit with smoothness penalty – χ2 lower by ≈ 100.

Blue: Fit using Gof =
∑

S 2
j θ(Sj) – χ2 higher by ≈ 120.
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Black: Latest CTEQ fit (arXiv:1007.2241 this week), with uncertainty

Red: Chebyshev fit with smoothness penalty – χ2 lower by ≈ 100.

Blue: Fit using Gof =
∑

S 2
j θ(Sj) – χ2 higher by ≈ 120.
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Black: Latest CTEQ fit (arXiv:1007.2241 this week), with uncertainty

Red: Chebyshev fit with smoothness penalty – χ2 lower by ≈ 100.

Blue: Fit using Gof =
∑

S 2
j θ(Sj) – χ2 higher by ≈ 120.
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Black: Latest CTEQ fit (arXiv:1007.2241 this week), with uncertainty

Red: Chebyshev fit with smoothness penalty – χ2 lower by ≈ 100.

Blue: Fit using Gof =
∑

S 2
j θ(Sj) – χ2 higher by ≈ 120.
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Black: Latest CTEQ fit (arXiv:1007.2241 this week), with uncertainty

Red: Chebyshev fit with smoothness penalty – χ2 lower by ≈ 100.

Blue: Fit using Gof =
∑

S 2
j θ(Sj) – χ2 higher by ≈ 120.
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Black: Latest CTEQ fit (arXiv:1007.2241 this week), with uncertainty

Red: Chebyshev fit with smoothness penalty – χ2 lower by ≈ 100.

Blue: Fit using Gof =
∑

S 2
j θ(Sj) – χ2 higher by ≈ 120.
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Current CTEQ-TEA procedure

(1) We allow up to ∆χ2 = 100 in determining the

eigenvector uncertainty sets, which we estimate to

yield a 90% confidence limit.

This does NOT increase the uncertainty range by as

much as you might think

(which would be
√

100/2.71 = 6),

because over this range, χ2 generally rises much

faster than quadratic in most directions; and because

the definition used for χ2 also includes the penalty

discussed on the next page.

The faster-than-quadratic rise of our measure of fit

quality implies that our results are fairly insensitive

to the choice ∆χ2 = 100 – e.g. 50 would give very

similar results.
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Current CTEQ-TEA procedure

(2) As we move away from the minimum of total χ2,

we don’t want to allow the fit to any individual data

set to deteriorate too far. (This can especially be a

problem for data sets with a small number of points.)

So we include a penalty in the effective χ2 of

35
∑

i=1

S A
i θ(Si)

where A = 16 and Si =
√

2χ2
i −√

2Ni − 1 is the

standard deviation-like measure introduced earlier.

The large power A = 16 halts displacement away

from the minimum rather sharply when any one of

the data sets starts to complain.

My collaborator Liang Lai likes to make an analogy

between the two components of our effective χ2 and

the House+Senate components of the US congress

(Google the Great Compromise 1787 for details).
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Parameter fitting vs. Hypothesis testing

The current MSTW method goes farther in this

phenomenological direction, by dropping all criteria

on total χ2, and instead just halting the

displacement along each eigenvector direction when

the fit to any one experiment is first stretched

beyond a desired confidence point.

In terminology John Collins and I introduced

(arXiv:hep-ph/0106173), this is a variety of the

“hypothesis testing” point of view, according to

which any PDF fit that provides a satisfactory fit to

all of the data sets is accepted – in contrast to the

standard statistical criteria for Parameter Fitting

based on an allowed tolerance in ∆χ2.

Is there any support for such a procedure from a

statistical point of view?

(The χ2
i s discussed here both for CTEQ and MSTW

are scaled if necessary to account for the fact that

some data sets can never be fit within 90%

confidence – not surprisingly since there are ∼ 35 of

them.)
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Monte Carlo approach

The NNPDF collaboration use an alternative

approach: generate “fake” data sets by shifting each

measured value randomly according to its reported

experimental error. Fitting these fake sets gives a

collection of fits whose range is hoped to measure

the true uncertainty.

Any comments on this validity of this procedure?

NNPDF also use neural network methods to avoid

parametrization dependence; but that brings in some

other problems. I am tempted to try the approach

using the conventional parametrization methods.

33



Summary

• Workable methods to extract PDFs and their

uncertainty range from data are available.

• These methods are based on intuitive approaches

that might benefit from a more rigorous

statistical approach.

• It is established that applying simple textbook

Gaussian statistics to this task would badly

underestimate the uncertainties. But it is not

clear how much of that is due to

1. Unreported systematic errors in the data

2. Systematic errors in the theory (NLO, no

nuclear corrections, choice of mc, etc.)

3. Effects of parametrization dependence

• Are there known methods, e.g. statistical

bootstrap, that we should be trying?

• Can the Banff spirit of creativity bring us new

methods to solve the important problem of PDF

uncertainties in particle physics?
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