PDFs and Run 2 inclusive jets
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Improved handling of Run 1 jet data
Run 1 inclusive jet experiments are now calculated
by integrating LO predictions over each pr bin
instead of using effective pr bin centers that were
inferred from the data. The NLO predictions are
then made by applying K-factors (NLO/LO) for
each data point from FastNLO using the central
CTEQG®6.6 fit in place of EKS.

Find good agreement between the old and new
calculations for run 1.



Run 2 jet K-factors from FastNLO

1. K-factors go far from 1 — even negative — for
p = ET/4. Hence that choice of scale is not
usable, because if the NLO correction is so large,
the NNLO corrections must be also large. This is
the reason MRST choose = ET for the central
choice, so the factor-of-2 range between
u=05ET and o =2.0ET can be used to
estimate uncertainty.

2. Have not compared these Run 2 results with
EKS

3. Using central CTEQ®6.6 for K-factors, rather
than computing PDF-dependent NLO/LO on
the fly, as FastNLO intended.

4. FastNLO offer “Midpoint (favored)” and
“Rsep.” I find “Midpoint” slightly favored by X2.
but the difference is small.



Figures on left are CDF, with Black=(0.0 < y < 0.1),
Red=(0.1 <y < 0.7), Green=(0.7 <y < 1.1),
Blue=(1.1 <y < 1.6), Magenta=(1.6 <y < 2.1).

Figures on right are D@, with Black=(0.0 < y < 0.4),
Red=(0.4 <y < 0.8), Green=(0.8 <y < 1.2),
Blue=(1.2 <y < 1.6), Magenta=(1.6 < y < 2.0),
Black dashed=(2.0 <y < 2.4).
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Figures on left are CDF, with Black=(0.0 < y < 0.1),
Red=(0.1 <y < 0.7), Green=(0.7 <y < 1.1),
Blue=(1.1 <y < 1.6), Magenta=(1.6 <y < 2.1).

Figures on right are D@, with Black=(0.0 < y < 0.4),
Red=(0.4 <y < 0.8), Green=(0.8 <y < 1.2),
Blue=(1.2 <y < 1.6), Magenta=(1.6 < y < 2.0),
Black dashed=(2.0 <y < 2.4).
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1. Have not (yet) tried the threshold resummation
option of Owens et al., which is also an available
option in FastNLO.

2. Progress from Soper and Olness on K-factor
checking?



Initial fits with Run 2 jet data

. Best fit has good weighted chisqgr overall: 2758
for 2775 data points.

. Chisgqr/Npt OK for the run 2 data (we assume
an additional 1% error for each data point)

. CTEQ®6.6 PDFs give weighted chisqr = 2787,
only 29 higher, so CTEQ®6.6 PDFs fit the run 2
data quite well.

. Refitting (with weight 2) lowers chisqr for CDF
from 101 to 89, and 126 to 121 for DO, a fairly
small improvement.

. Stronger weight for DO doesn’'t do much to the
fit—the fit to DO is already quite good and can’t
be improved much.

. Stronger weight for CDF improves its fit slightly,
from 89 to 80 or 77.

. Normalizations for the inclusive jet experiments
are OK: N=0.983 for CDF, N=0.952 for DO, for
the weight=2 fit.

. Systematic error parameters are OK: a few are
larger than 1.0, but none larger than 1.8



Solid: CTEQ6.6.

Dashed: fit with weight 2 for both CDF and DO
Dotted: fit with weight 20 for both CDF and DO
GREEN=u, BLUE=d, RED=g at Qg = 1.3 GeV
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e "HJ" structure went away: No bump in the
gluon at large . When weight=2 is used for the
jets, g(x) < u(x) at large . However, when
weight=20 is used, gluon at large = becomes
comparable to u(x).

e T he presence or absence of the “bump” is really
a false issue — although the central cteqg6.6 fit
has one and the new central fit doesn't,
acceptable fits of either type appear among the
eigenvector sets of cteq6.6 and of the new fits.



Solid: CTEQ®6.6.
Dashed: fit with weight 2 for both CDF and DO
Dotted: fit with weight 20 for both CDF and DO

GREEN=%, BLUE=d, RED=s=35 at Qg = 1.3 GeV.
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e No significant change in the sea quarks



Further fits with Run 2 jet data

The addition of the run 2 jet data does not reduce
the gluon uncertainty very much, given the large
increase in integrated luminosity. The reason for this
IS not that the run 1 and run 2 data disagree with
each other, since fits that use only run 2 data have
approximately the same uncertainty.

10



BLUE = CTEQ®6.6 (run 1 jet data only)
RED = new fit (run 1 and run 2 jet data)
BLACK new fit with run 2 jet data only
GREEN = new fit (*NO* jet data)
MAGENTA = up quark
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Puzzling feature: large increase in quantity and
quality of inclusive jet data has not particularly
reduced the gluon uncertainty. Indeed, fit with no jet
data at all (green) is quite narrow.

Perhaps this is simply a parametrization effect: All
of these fits use fixed as in (1 — x)%2 for gluon — as
done in CTEQ®6.6 and all of our previous fits.

“valence-like” gluon? Question can’'t be answered at
this time: good fits are possible with gluon

11



considerably larger or considerably smaller than up
quark at large x for scale Q=1.3.

At Q=100, the quark dominates no matter what.



Unfinished business
We assume an additional 1% point-to-point error in
the run 2 inclusive jet data. If this is supposed to
represent error in the theory, e.g. NLO

approximation, it should instead be a smooth
parametrization.
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Near-term data sets to be included in PDF fit
1. W rapidity asymmetry and lepton-from-W-decay
rapidity asymmetry (with pp cuts)

2. “"Combined fitting:” PDFs and nonperturbative
ResBos parameters. (Preliminary fits and
eigenvector sets have already been made, but
need to include the pp distribution data for Z°
production at the Tevatron.)

3. HERA run 2 data, when it becomes available.

13



Theoretical prejudices and Neural Nets

The NNPDF collaboration has become a significant
player in the PDF game.

Obvious difference between that approach and ours:

1.

2.

We enforce smoothness in the input PDFs —
limited number of parameters.

We make mild Regge-based assumptions on
functional forms at x — O

. We make mild Spectator Counting assumptions

on functional forms and parameter ranges at

r— 1.

. In finalizing CTEQ®6.6, we went to considerable

effort to reduce

s(z) + 5(x)

d(z) + u(x)
at small z. It is extremely easy to get fits where
this ratio is as large as 2 at moderately small x.
Should we have a problem with that??
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How to measure consistency of global fit
(Work with John Collins in 2001:)
J. C. Collins and J. Pumplin, “Tests of goodness of
fit to multiple data sets” [hep-ph/0105207].

Key idea: In addition to the
Hypothesis-testing criterion: Ay?2 ~ 2N
use the stronger
Parameter-fitting criterion: Ayx2 ~ 1
Parameters here are relative weights assigned to

various experiments, or to results obtained using
various experimental methods. Examples:
fa 2 2 2 2
e Plot minimum x7 vS. Xiot — X7, where x7 is one
of the experiments, or all data on nuclei, or all
data at low Q2,. ..

or
e Plot both as function of Lagrange multiplier «
where (1 — u)xz2 + (1 + u)(x%ot — XZQ) is the
quantity minimized.

Can obtain quantitative results by fitting to a model
with a single common parameter p:

2
P=A+ (gfy)" = p=0%sing

sind

2 _ —S _
Xfot; = B + (gosé’) = p=.S54+cosh

These differ by S+1, i.e., by S "standard deviations”
15
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The situation John and I considered was to consider
a subset S of the global data set — such as the data
from a single experiment, or data of a single type
(e.g. inclusive jets) — and its complement S which
consists of the rest of the data.

By fitting to minimize wx2 + X§2 for a number of
values of the relative weight w, one can map out Xg
as a function of X§2-

Two problems:

1. Since traditional Gaussian statistics don't apply
to our problem because of unknown systematic
errors (both in theory and in experiment), we still
don’'t know how to decide whether a particular
X2 Vs. X§2 curve shows compatibility or
incompatibility.

2. The method doesn’t directly show what aspects
of the theory are affected by the tension between
S and S (although the PDF fits that were
obtained to make the curve can be used to
explore the “pull” associated with S).

A new method that I am currently studying appears
to solve the second problem.
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New method for studying compatibility
Near the minimum, x2 is an approximately quadratic
function of the PDF shape parameters Aq,..., Ayn.
By calculating the Hessian matrix
Hij = aiz gjx
A
which defines the quadratic form, and using its
eigenvectors as new basis vectors in the

N-dimensional space, we obtain a linear
transformation that puts y2 into a very simple form:

N
X’ =x6 + YA (1)

i=1
(In practice, it is necessary to carry this out by an
iterative method, because the large range of
eigenvalues of the Hessian — corresponding to a
spectrum from steep to flat directions — requires
different step sizes in different directions to avoid
non-quadratic behavior when calculating the
derivatives numerically.)
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The linear transformation that leads to

N
X2 — Xg + Z ZZ'Q

i=1
is not unique, because any further orthogonal
transform of the z; will preserve it. Such an
orthogonal transformation can be defined using the
eigenvectors of any symmetric matrix. After this
second linear transformation of the coordinates, the
chosen symmetric matrix will then be diagonal in the
resulting new coordinates. Thus there is a freedom
to diagonalize an additional matrix while preserving
the simple form for x2. (In the standard Hessian

method, and in my usual iterative procedure, the
coordinate space distance measure

N

1

is made diagonal along with x2.)

This freedom can be exploited by taking the
symmetric matrix from the quadratic form that
describes the contribution to x2 from any chosen
subset S of the data. Then. ..
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In the quadratic approximation, this choice puts the
contribution from the subset of data into a diagonal
form:

N
X5 =a+ Y (Bizi +7i72) .
i=1

If all of the parameters ~; lie in the range 0 < ~; < 1,
this leads by simple algebra to

x> = x3§ + x& + const

N
x5 = > [(z— A)/By)?
=1

N
Xz = > [(z—Cy)/Di)?
i=1

Thus the subset S of the data and its complement S

take the form of independent measurements of the
N variables z;, with results

S:zi = A; + B;

g:zi C; £ D,

20



x> = x3 + x2 + const
2 al 2
x§ = Y [(zi—A)/Bj]
=1

N
x& = > [(z—C)/D)?
1=1
This decomposition answers the question “What is

measured by data subset S7?" — it is those
parameters z; for which the B; < D;. These
parameters will generally span a subspace of the full
N-dimensional fitting space, with various fractions of
involvement along different directions.

The decomposition also measures the compatibility
between S and the rest of the data S: the
disagreement between the two is

(4, — C;) £ /B2 +C?

along the direction of z;. Overall chi-squared form
of difference is

N
S (A = C)2/(BZ 4 CP)
i=1
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In our PDF application, not all of the ~; parameters
will lie in the range 0 < ~v; < 1.

Directions with ~; < 0 correspond to parameters for
which the data subset S has very little to say, so the
value is determined entirely by the complementary
subset S.

Directions with ~; > 1 correspond to linear
combinations of the original parameters that are
almost entirely deterimined by S, so the
complementary subset S is irrelevant.

To measure the compatibility between S and S, we
can simply ignore the dimensions in which 0 < v; < 1
fails.

Work on examining the compatibility and influence
of the inclusive jet data on the PDF fit using this
new technique is in progress.
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Notes based on discussions

1. As noted by Liang, the studies of scale choice
are inconsistent, since the K-factor tables were
all based on the central CTEQ®6.6 fit, which
included run 1 inclusive jet data that was fitted
using ONLY scale ET /2. To do it consistently,
need to rerun FastNLO using the various PDF
sets created using different scale choices, and
iterate that.

2. Could also try to implement FastNLO as it was
intended, where the K-factors are calculated in
each evaluation of FCN.

3. It is disquieting to have the addition of inclusive
jet data expanding the uncertainty range
associated with the high-x gluon. This is a
symptom that the parametrization is too
confining. It may be enough to use free
as(gluon); but perhaps as(gluon) is also needed.
This could be constructed as an object lesson for
the HERA-only fits, which use quite restrictive
parametrizations.
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Final remark
The parametrizations of scale effects as a theoretical
systematic error shown by Olness and Soper will be
useful, once they have been extended to include the
various rapidity ranges of the data. The new theory
parameters induced that way will need to be taken as
additional search parameters (producing additional
eigenvector sets) — can't treat them the way we do
experimental systematic errors by finding the best-fit
analytically (quadratic form), because the same
theory parameters apply to both experiments.
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