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e Parametrization dependence
e Example: strangeness in CTEQ®6.6
e How to include theory constraints in PDF fit

e Remarks on Regge behavior at small x



PDF fitting paradigm

1. Parameterize each flavor fq(x, Q) at fixed small
Qo (A1,...,A422)

2. Compute PDFs fq(z,Q) at Q > Qg by DGLAP

3. Compute cross sections for DIS(e,u,v),
Drell-Yan, Inclusive Jets,. ..

4. Compute “XQ” measure of agreement between
predictions and measurements:

X2=;Wz‘<

generalized to include correlated systematic
errors.

5. Minimize x2 with respect to the shape
parameters {A4;}

6. Uncertainty Range is the region in {A;} space
where X2 iIs sufficiently close to minimum that all
experiments are fit tolerably well—characterized
by eigenvector sets.

data; — theory; 2
error;

Parametrization dependence = systematic error from
the functional choices in fy,(x, Qp).

(Alternative: could just define fq(x,Qg) on a few
grid points and interpolate — neural net method.)



Example from CTEQ6.6
Previous CTEQ PDF analysis generally assume
s(z) = 5(z) < d(z) + u(x) at Qp. We dropped that
Ansatz in CTEQ®6.6.

A preliminary version used innocent-looking form
s(z) = 5(x) = agz® (1 — 2)?2, with a; same as for d
and u as given by Regge theory.

Strangeness looked OK by itself; but
5(z) > u(x), d(z) at small x—violates theory
prejudice and perhaps Hermes data.
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More elaborate parametrization used in CTEQ®6.6
chosen to make s5(x, Qo) smaller at small x:
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General method for theory constraints
Example: use a very flexible parametrization such as
5(x) = ag 2% (1 — 1)%2 ¢23VZ+aaZ that has more
parameters than can be determined from the data.

Then add a “penalty” to X2 to force parameters such
as ao and 5(zx)/(d(z) + u(z)) at x — 0 to fall within
the range allowed by our theoretical prejudices.

For the central “Best Fit”, this is no different from
the previous method of just freezing parameters that
cannot be determined from the fitting at plausible
values. But for the uncertainty analysis, it captures
the actual wider range of uncertainties, since a new
eigenvector direction (two new extreme eigenvector
sets) is generated for each parameter that is treated
this way.

In the standard analysis, there are several
parameters, such as the (1 —x)% behavior of g(x, Qo)
or dy(x, Qo) which could benefit from this treatment.

The goal in all this is to avoid repeating the “HJ"
scenario, in which new data (Run I inclusive jet data
at Tevatron) appeared to lie outside of
standard-model predictions; but were later found
consistent using an unanticipated form for g(x, Qg).



Regge behavior of u(x)
The Regge behavior f(z,Q) o % that we assume
for x — 0 at Q¢ is quite well preserved by DGLAP
evolution. This can be seen by the nearly
straight-line behavior on a log-log plot, with slope

nearly independent of @:
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Where Red/Green/Blue/Magenta/Black:
Q= 1.3/2.0/3.2/5.0/20 GeV.

The numerical value of the slope a1 agrees well with
expectations from Regge. That result supports the
use of the f(x,Q) x 2% ansatz.

However, the uncertainty in a7 from fitting is small
compared to the uncertainty of estimates based on
Regge, so the theory does not provide a useful
constraint.



Regge behavior of uy(x)
The Regge behavior f(z,Q) o % that we assume
for x — 0 at Qg is also well preserved by DGLAP
evolution:
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where Red/Green/Blue/Magenta/Black:
Q =1.3/2.0/3.2/5.0/20 GeV.

Again the observed slope value a7 is consistent with
expectations from Regge theory, which supports the
choice of functional form.

However, again the uncertainty in a1 from PDF
fitting is small compared to the uncertainty of its
estimate based on Regge theory, so traditional
Regge phenomenolo doesn’'t provide a useful
constraint on a7 to improve PDFs.



g(x) at small x
In contrast to valence and sea quark distributions,
the NLO evolution of the gluon distribution at small
x IS very rapid, so no simple comparison can be
made with expectations from Regge theory:
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where Red/Green/Blue/Magenta/Black:
Q= 1.3/2.0/3.2/5.0/20 GeV.

Perhaps small-x resummation corrections to DGLAP
would restore Regge behavior for g(x, Q)7



