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Topic 1: Chebyshev method to reduce parametri-

zation dependence.

Topic 2: Assessing the internal consistency of global

PDF fits.

1



The standard QCD fitting paragigm

1. Parametrize the PDFs fa(x, µ0) at a small µ0 by

smooth functions with lots of free parameters.

2. Calculate fa(x, µ) at all µ > µ0 by DGLAP

evolution.

3. Calculate χ2 =
∑

i[(datai − theoryi)/errori]
2 to

measure of the quality of fit to a large variety of

experiments.

4. Obtain a Best Fit estimate of the true PDFs by

varying the free parameters to minimize χ2.

5. Estimate the uncertainty range as all PDF sets

with χ2 not more than some ∆χ2 (∼ 50) above

the Best Fit value. (This uncertainty range is

characterized by a collection of PDF sets

obtained using the eigenvectors of the Hessian

matrix.)

2



Effective χ2

The χ2 that is minimized in the global fit includes

contributions from experimental systematic errors, as

published with the data.

An “Effective χ2” can be defined by adding penalties

to enforce desired features of the global fit, such as

that it should agree reasonably well with every

experiment.

The Effective χ2 can also include penalties to

enforce desired theoretical features of the fit, such as

smoothness of the distributions. This is particularly

necessary when a large number of parameters are

introduced in order to reduce the dependence on the

choice of functional forms.
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PDF parametrizations at Q0 ∼ 1.4GeV

Typical recent gluon parametrization (CT10)

x g(x, µ0) = a0 xa1 (1 − x)a2 ep(x)

where

p(x) = a3
√

x + a4x + a5x2

• Power-law dependence at x → 0 (Regge theory)

• Spectator counting behavior at x → 1

• Subleading terms down by ∼ x0.5 at x → 0

(Regge)

• g(x) positive definite (possibly too strong)

New method: very free parametrization

p(x) =
12
∑

j=1

bj xj/2

Challenge: How to obtain smooth, stable fits with

∼ 80 free parameters instead of ∼ 25.
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Chebyshev Polynomial method

Replace the fitting parameters {bj} by equivalent

parameters {cj} where

p(x) =
12
∑

j=1

bj xj/2 =
12
∑

j=1

cj Tj(y)

where y = 1 − 2
√

x maps the physical region

0 < x < 1 to −1 < y < 1 .

Definition of the Chebyshev polynomials:

T0(y) = 1

T1(y) = y

Tn+1(y) = 2yTn(y) − Tn−1(y)

Tj(y) has extreme values of ±1 at the endpoints and

at j − 1 points in the interior of the physical region

0 < x < 1 . Chebyshev polynomials of increasingly

large j thus model structure at an increasingly fine

scale in
√

x.
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Chebyshev polynomials vs. simple powers

u3, u5, u7 T3(u), T5(u), T7(u)

Equivalent definition for Chebyshev polynomials:

Tn(u) = cos(nθ)

where

u = cos(θ)
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Penalty to enforce Smoothness

The Chebyshev parametrizations can easily take on

more fine structure in x than is plausible in the

nonperturbative physics that is being described.

To avoid this, we add a penalty to χ2

Observe that the classic form

f(x) = a0 xa1 (1 − x)a2 ,

surely embodies the appropriate smoothness. It has

x (1 − x) d(ln f)/dx = a1 − (a1 + a2)x

which is linear in x. Hence it is natural to define

Φa(x) = x (1 − x) d(ln fa)/dx

Sa =
∫ x2

x1

(

d2Φa

dx2

)2

dx

Add
∑

a Ca Sa to χ2, where the sum runs over flavors

a = u, ū, d, d̄, g, and s. The weights Ca are chosen

to make the overall penalty ∼ 5.

A penalty based on the approximate behavior

f(x) = a0 xa1 is also included, to enforce smoothness

at small x.
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Chebyshev fits

Shaded region: fractional uncertainty from CT10

(26 free parameters)

Solid: include Tevatron W → eν asymmetry (wgt 1)

Dashed: Chebyshev fit with d̄(x)/ū(x) → 1 at x → 0

(83 free parameters, χ2 lower by ∼ 140).

Dotted: Chebyshev fit with d̄(x)/ū(x) free at x → 0

(84 free parameters, χ2 lower by ∼ 140).

Improvement in χ2 comes mostly from expts that are

sensitive to flavor ratios (Wasy), or to large-x

behavior (NMC and BCDMS µp → µX and µd → µX).
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Chebyshev fits at scale = 100 GeV

The change in the central fit that results from

increased freedom in the parametrization persists to

large scales, as shown here.

The change for x < 10−2 is mainly in the d̄(x) and

ū(x) distributions, since d(x) ≈ d̄(x) and u(x) ≈ ū(x)

in that region.
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d/u and d̄/ū at scale = 100GeV

The increased uncertainty is especially strong in d/u

or d̄/ū. It may therefore be important for analyzing

the W lepton decay asymmetry at the LHC.

The solid curve is MSTW2008nlo. It lies outside the

CT10 uncertainty band in a different way — at least

supporting the notion that d/u uncertainty was

underestimated in previous fits.
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The Smoothing effect of evolution

A fit with reduced smoothness penalty: lots of

structure at the input scale µ = 1.3GeV.

Even that much structure is greatly reduced at

higher scales due to DGLAP evolution.
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Uncertainties at large x

Shaded region: fractional uncertainty according to

CT10 (26 free parameters, ∆χ2 = 100)

Red curve: Chebyshev Best Fit (84 free parameters)

Blue and Magenta curves: Chebyshev fits with χ2

higher than Best Fit by only 5.

The true uncertainty at x → 1 is therefore much

larger than the estimate from CT10, or other fits

based on the Hessian method.

Perhaps some theoretical constraints from

Nonperturbative methods can be used to reduce this

uncertainty?
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Parton distributions at x → 1

Each panel shows results from a Chebyshev fit with

very good χ2.

Solid = up quark

Dashed = down quark

Dotted = gluon

At low scale (Q = 1.3GeV) any of the flavors u, d, or

g can dominate in the limit x → 1.

Perhaps experts on Nonperturbative models can

provide useful restrictions on this uncertainty?

(Maybe they can start by explaining why the

gluon/quark ratio is not small at x → 1!)
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Conclusions on Chebyshev fits

• Chebyshev polynomials combined with

smoothness constraints can produce stable PDF

fits with ∼ 80 free parameters.

• Quality of the fit improves — overall decrease in

real χ2, compared to fits with the traditional

∼ 25 parameters is ∼ 140.

• Increased flexibility of parametrization expands

the uncertainty range for d(x)/u(x) and

d̄(x)/ū(x). This may be important for

interpreting the LHC W lepton asymmetry.
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Part 2: Internal Consistency of PDF fits

1. Overall χ2/N

2. χ2/N for individual experiments

3. DSD method
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χ2 per point

Gaussian statistics predicts 1σ range of

χ2 = N ±
√

2N

A typical recent fit (CT10) has χ2 = 3015 for 2753

data points with 26 fitting parameters. That χ2 is

just a little higher than the expected range:

(2753 − 26) ±
√

2 (2753 − 26) = 2650 to2800

(Expanding all of the experimental errors uniformly

by only 4% would be enough to make the fit appear

consistent from this point of view.)

To compare the quality of fit to different experiments

with widely different numbers of points, it is

convenient to use an Equivalent Normal Distribution

variable Z defined such that the cumulative

probability for χ2 according to the statistical χ2

distribution is equal to the cumulative probability

distribution at Z for the Normal distribution.

The distribution of fits to the individual experiments

in CT10 is broader than would be expected from

Gaussian statistics.
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Improvement in Fit quality

Expt N Z(CT10) Z(Cheby)

HERA 579 2.84 2.45

BCDMS F2p 339 1.51 0.81
BCDMS F2d 251 0.80 -0.18

NMC F2p 201 5.88 5.41

NMC F2p/d 123 0.48 -0.06
E605 DY 119 -1.60 -2.01

E866 pd/pp 15 -1.36 -2.15
E866 pp 184 2.19 1.59

CDF Wasy 1 11 -0.07 0.27
CDF Jet 1 33 2.27 2.30

D0 Jet 1 90 -1.81 -2.58
CDF Jet 2 72 2.95 0.99

D0 Jet 2 110 1.04 1.83
D0 dσZ/dy 28 -1.90 -1.94

CDF dσZ/dy 29 2.25 2.01
CDF Wasy 11 0.44 0.15
D0 Wasy 2 12 4.16 2.73

H1 F2c 8 0.67 0.75
H1 F2c 10 1.19 1.33
H1 F2b 10 -0.38 -0.45

ZEUS F2c 18 -0.20 0.02
ZEUS F2c 27 -0.85 -0.61

CDHSW F2 85 -1.98 -1.90
CDHSW F3 96 -2.11 -2.33

CCFR F2 69 0.21 0.53
CCFR F3 86 -5.18 -5.03
NuTeV ν 38 -0.42 -1.62
NuTeV ν̄ 33 -0.55 -0.94
CCFR ν 40 1.14 1.09
CCFR ν̄ 38 -0.95 -1.07
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Distribution of Z for CT10

Smooth curve is gaussian with mean 0 and standard

deviation 1.

The observed histogram is broader than this

prediction, which demonstrates that the

uncertainties are not strictly gaussian.
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Data Set Diagonalization

Partition the data into two subsets:

χ2 = χ2
S + χ2

S
.

S can be any one of the experiments, or all

experiments of a particular type that might be

suspected of an untreated systematic error.

S is all the rest of the data.

The DSD method answers the questions

1) What does subset S measure?

2) How consistent is S with the rest of the

data?

The essential trick is that in the Hessian method,

the linear transformation that leads to

χ2 = χ2
0 +

N
∑

i=1

z 2
i

is not unique, since any further orthogonal transform

of the zi will preserve it. Such a transformation can

be defined using the eigenvectors of the quadratic

form corresponding to χ2
S. Then . . .
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χ2 = χ2
S + χ2

S̄ + const

χ2
S =

N
∑

i=1

[(zi − Ai)/Bi]
2

χ2
S̄ =

N
∑

i=1

[(zi − Ci)/Di]
2

Thus the subset S of the data and its complement S

take the form of independent measurements of the

N variables zi, with results

S : zi = Ai ± Bi

S : zi = Ci ± Di

This answers “What is measured by subset S?” —

it is the parameters zi for which the Bi ∼< Di. The

fraction of the measurement of zi contributed by S is

γi = D 2
i /(B 2

i + D 2
i ) .

The decomposition also measures the compatibility

between S and S: the disagreement between the two

in standard deviations is

σi = |Ai − Ci|/
√

B 2
i + D 2

i .
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Experiments that provide at least one
measurement with γi > 0.1 (∼ CTEQ6.6)

Process Expt N
∑

i
γi

e+ p → e+ X H1 NC 115 2.10

e− p → e− X H1 NC 126 0.30
e+ p → e+ X H1 NC 147 0.37
e+ p → e+ X H1 CC 25 0.24

e− p → ν X H1 CC 28 0.13

e+ p → e+ X ZEUS NC 227 1.69

e+ p → e+ X ZEUS NC 90 0.36
e+ p → ν X ZEUS CC 29 0.55
e+ p → ν̄ X ZEUS CC 30 0.32
e− p → ν X ZEUS CC 26 0.12

µ p → µ X BCDMS F2p 339 2.21

µ d → µ X BCDMS F2d 251 0.90
µ p → µ X NMC F2p 201 0.49

µ p/d → µ X NMC F2p/d 123 2.17

pCu → µ+µ−X E605 119 1.52

pp, pd → µ+µ− X E866 pp/pd 15 1.92
pp → µ+µ− X E866 pp 184 1.52

p̄p → (W → ℓν)X CDF I Wasy 11 0.91

p̄p → (W → ℓν)X CDF II Wasy 11 0.16
p̄ p → jetX CDF II Jet 72 0.92
p̄ p → jetX D0 II Jet 110 0.68

ν Fe → µ X NuTeV F2 69 0.84

ν Fe → µ X NuTeV F3 86 0.61
ν Fe → µX CDHSW 96 0.13
ν Fe → µX CDHSW 85 0.11

ν Fe → µ+µ−X NuTeV 38 0.68
ν̄ Fe → µ+µ−X NuTeV 33 0.56
ν Fe → µ+µ−X CCFR 40 0.41
ν̄ Fe → µ+µ−X CCFR 38 0.14

Total of
∑

γi = 23 is close to the actual number of fit parameters.
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Consistency tests

Measurements that conflict strongly with the others
(σi > 3) are shown in red. There are lots of them!

Expt (γ1, σ1), (γ2, σ2), . . .

H1 NC (0.72, 0.01) (0.59, 3.02) (0.43, 0.20) (0.36, 1.37)

H1 NC (0.30, 0.02)
H1 NC (0.21, 0.06) (0.16, 0.83)
H1 CC (0.24, 0.00)

H1 CC (0.13, 0.00)

ZEUS NC (0.45,3.13) (0.42, 0.32) (0.35,3.20) (0.29, 0.80)

(0.18, 0.64)
ZEUS NC (0.22, 0.01) (0.14, 1.61)
ZEUS CC (0.55, 0.04)
ZEUS CC (0.32, 0.10)

ZEUS CC (0.12, 0.02)

BCDMS F2p (0.68, 0.50) (0.63, 1.63) (0.43, 0.80) (0.34,4.93)

(0.13, 0.94)
BCDMS F2d (0.32, 0.67) (0.24, 2.49) (0.19, 2.09) (0.16,5.22)

NMC F2p (0.20,4.56) (0.17,4.76) (0.12, 0.50)
NMC F2p/d (0.61, 1.11) (0.56,3.60) (0.43, 0.90) (0.36, 0.79)

(0.21, 1.41)

E605 DY (0.91, 1.29) (0.38, 1.12) (0.23, 0.31)

E866 pp/pd (0.88, 0.57) (0.69, 1.15) (0.35, 1.80)
E866 pp (0.75, 0.04) (0.39, 1.79) (0.23, 1.94) (0.14,3.57)

CDF Wasy (0.57, 0.33) (0.34, 0.51)

CDF Wasy (0.16, 2.84)
CDF Jet (0.48, 0.47) (0.44,3.86)

D0 Jet (0.39, 1.70) (0.29, 0.76)

NuTeV F2 (0.37, 2.75) (0.29, 0.42) (0.18, 0.97)

NuTeV F3 (0.30, 0.50) (0.16, 1.35) (0.15, 0.30)
CDHSW (0.13, 0.04)
CDHSW (0.11, 1.32)
NuTeV (0.39, 0.31) (0.29, 0.66)
NuTeV (0.32, 0.18) (0.24, 2.56)
CCFR (0.24, 1.37) (0.17, 0.12)
CCFR (0.14, 0.79)

Only measurements that play a significant role (γi > 0.1) are listed.
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Outlook

Plan to carry out the DSD procedure for Chebyshev

fits.
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