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Topics:

1. PDF theory constraints

2. Consistency of data sets used in PDF fitting

(arXiv:0909.0268,arXiv:0904.2425)

3. Choice of ∆χ2 (arXiv:0909.5176: heavily revised

version in progress)

4. Brief comments
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Regge behavior of ū and d̄

The Regge behavior x ū(x, µ) ∝ xa1 that we assume

for x→ 0 at µ0 is quite well preserved by DGLAP

evolution. This can be seen by the nearly

straight-line behavior on a log-log plot, with slope

nearly independent of µ:

µ = 1.3/2.0/3.2/5.0/20GeV

Numerical value of the slope a1 agrees well with

expectations from Regge, which supports the use of

the x ū(x, µ) ∝ xa1 ansatz.

Regge theory does not provide a useful constraint on

a1, because the uncertainty from PDF fitting is

smaller than the uncertainty of estimates from

strong-interaction phenomenology.

These considerations also demand ū/d̄→ 1 at x→ 0.
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Regge behavior of uv and dv

uv ≡ u− ū, dv ≡ d− d̄. The Regge behavior

xuv(x, µ) ∝ xa1 that we assume for x→ 0 at µ0 is

also well preserved by DGLAP evolution:

µ = 1.3/2.0/3.2/5.0/20GeV

Observed slope value a1 is again consistent with

expectations from Regge theory, which supports

using this functional form.

Again the uncertainty in a1 from PDF fitting is small

compared to the uncertainty of its estimate based on

Regge theory, so traditional Regge phenomenology

does not provide a useful constraint on a1 to

improve the PDF determination.

These considerations also demand uv/dv → 1 at

x→ 0.
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Regge behavior of gluon at small x??

In contrast to valence and sea quark distributions,

the NLO evolution of the gluon distribution at small

x is very rapid. Hence no simple comparison can be

made with expectations from Regge theory:

µ = 1.3/2.0/3.2/5.0/20GeV

Rapid change in slope is related to the rapid

variation of the observed power F2 ∼ xλ(Q
2).

Speculation: perhaps small-x resummation

corrections to DGLAP would restore Regge behavior

for g(x, µ)?

4



Measuring internal consistency of the fit

Partition the data into two subsets:

χ2 = χ2S + χ2
S

where subset S can, for example, be chosen as

• any single experiment (reported here)

• all of the jet experiments

• all of the low-Q data points (to look for higher

twist)

• all of the low-x data points (to look for BFKL)

• all experiments with deuteron corrections

• all of the neutrino experiments (to look for

nuclear corrections)

A method I call Data Set Diagonalization which was

first proposed in my HERA/LHC talk in March 2004

directly answers the questions

1. What does subset S measure?

2. Is subset S consistent with the rest of the data?

5



Data Set Diagonalization

The DSD method is an extension of the Hessian

method. It works by transforming the contributions

χ2S and χ2
S
to χ2 into a form where they can be

interpreted as independent measurements of N

quantities.

The essential point is that the linear transformation

that leads to

χ2 = χ20 +
N
∑

i=1

z 2i

is not unique, because any further orthogonal

transform of the zi will preserve it. Such an

orthogonal transformation can be defined using the

eigenvectors of any symmetric matrix. After this

second linear transformation of the coordinates, the

chosen symmetric matrix will then be diagonal in the

resulting new coordinates.

This freedom is exploited in the DSD method by

taking the symmetric matrix from the quadratic form

that describes the contribution to χ2 from the subset

S of the data that is chosen for study. Then . . .
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DSD method – continued

χ2 = χ2S + χ2S̄ + const

χ2S =
N
∑

i=1

[(zi −Ai)/Bi]
2

χ2S̄ =
N
∑

i=1

[(zi − Ci)/Di]
2

Thus the subset S of the data and its complement S

take the form of independent measurements of the

N variables zi, with results

S : zi = Ai ± Bi

S : zi = Ci ± Di
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DSD method – continued

χ2 = χ2S + χ2S̄ + const

χ2S =
N
∑

i=1

[(zi −Ai)/Bi]
2

χ2S̄ =
N
∑

i=1

[(zi − Ci)/Di]
2

This decomposition answers the question “What is

measured by data subset S?” — it is those

parameters zi for which the Bi ∼< Di. The fraction of

the measurement of zi contributed by S is

γi =
D 2
i

B 2
i + D 2

i

.

The decomposition also measures the compatibility

between S and the rest of the data S: the

disagreement between the two is

σi =
|Ai − Ci|

√

(B 2
i + C 2

i )
.
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Experiments that provide at least one
measurement with γi > 0.1

Process Expt N
∑

i
γi

e+ p→ e+X H1 NC 115 2.10

e− p→ e−X H1 NC 126 0.30
e+ p→ e+X H1 NC 147 0.37
e+ p→ e+X H1 CC 25 0.24
e− p→ ν X H1 CC 28 0.13

e+ p→ e+X ZEUS NC 227 1.69

e+ p→ e+X ZEUS NC 90 0.36
e+ p→ ν X ZEUS CC 29 0.55
e+ p→ ν̄ X ZEUS CC 30 0.32
e− p→ ν X ZEUS CC 26 0.12

µ p→ µX BCDMS F2p 339 2.21

µd→ µX BCDMS F2d 251 0.90
µ p→ µX NMC F2p 201 0.49

µ p/d→ µX NMC F2p/d 123 2.17

pCu→ µ+µ−X E605 119 1.52

pp, pd→ µ+µ−X E866 pp/pd 15 1.92
pp→ µ+µ−X E866 pp 184 1.52

p̄p→ (W→ `ν)X CDF I Wasy 11 0.91

p̄p→ (W→ `ν)X CDF II Wasy 11 0.16
p̄ p→ jetX CDF II Jet 72 0.92
p̄ p→ jetX D0 II Jet 110 0.68

ν Fe→ µX NuTeV F2 69 0.84

ν Fe→ µX NuTeV F3 86 0.61
ν Fe→ µX CDHSW 96 0.13
ν Fe→ µX CDHSW 85 0.11

ν Fe→ µ+µ−X NuTeV 38 0.68
ν̄ Fe→ µ+µ−X NuTeV 33 0.56
ν Fe→ µ+µ−X CCFR 40 0.41
ν̄ Fe→ µ+µ−X CCFR 38 0.14

Total of
∑

γi = 23 is close to the actual number of fit parameters.

H1+ZEUS measure 6.2 of the parameters — fewer than in HERA-only fits
as expected.
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Consistency tests: measurements that
conflict strongly with the other experiments

(σi > 3) are shown in red.

Expt
∑

i
γi (γ1, σ1), (γ2, σ2), . . .

H1 NC 2.10 (0.72, 0.01) (0.59, 3.02) (0.43, 0.20) (0.36, 1.37)

H1 NC 0.30 (0.30, 0.02)
H1 NC 0.37 (0.21, 0.06) (0.16, 0.83)
H1 CC 0.24 (0.24, 0.00)

H1 CC 0.13 (0.13, 0.00)

ZEUS NC 1.69 (0.45,3.13) (0.42, 0.32) (0.35,3.20) (0.29, 0.80)

(0.18, 0.64)
ZEUS NC 0.36 (0.22, 0.01) (0.14, 1.61)
ZEUS CC 0.55 (0.55, 0.04)
ZEUS CC 0.32 (0.32, 0.10)

ZEUS CC 0.12 (0.12, 0.02)

BCDMS F2p 2.21 (0.68, 0.50) (0.63, 1.63) (0.43, 0.80) (0.34,4.93)

(0.13, 0.94)
BCDMS F2d 0.90 (0.32, 0.67) (0.24, 2.49) (0.19, 2.09) (0.16,5.22)

NMC F2p 0.49 (0.20,4.56) (0.17,4.76) (0.12, 0.50)
NMC F2p/d 2.17 (0.61, 1.11) (0.56,3.60) (0.43, 0.90) (0.36, 0.79)

(0.21, 1.41)

E605 DY 1.52 (0.91, 1.29) (0.38, 1.12) (0.23, 0.31)

E866 pp/pd 1.92 (0.88, 0.57) (0.69, 1.15) (0.35, 1.80)
E866 pp 1.52 (0.75, 0.04) (0.39, 1.79) (0.23, 1.94) (0.14,3.57)

CDF Wasy 0.91 (0.57, 0.33) (0.34, 0.51)

CDF Wasy 0.16 (0.16, 2.84)
CDF Jet 0.92 (0.48, 0.47) (0.44,3.86)
D0 Jet 0.68 (0.39, 1.70) (0.29, 0.76)

NuTeV F2 0.84 (0.37, 2.75) (0.29, 0.42) (0.18, 0.97)

NuTeV F3 0.61 (0.30, 0.50) (0.16, 1.35) (0.15, 0.30)
CDHSW 0.13 (0.13, 0.04)
CDHSW 0.11 (0.11, 1.32)
NuTeV 0.68 (0.39, 0.31) (0.29, 0.66)
NuTeV 0.56 (0.32, 0.18) (0.24, 2.56)
CCFR 0.41 (0.24, 1.37) (0.17, 0.12)
CCFR 0.14 (0.14, 0.79)
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Consistency of measurements in a global fit

Histogram of the consistency measure σi for the 68

significant (γi > 0.1) measurements provided by the

37 experiments in a typical global fit.

Solid curve is the absolute Gaussian prediction

dP

dσ
=

√

2

π
exp(−σ2/2) .

Dashed curve is a scaled Gaussian with c = 1.9 :

dP

dσ
=

√

2

π c2
exp(−σ2/(2 c2))

Conclude: Disagreements among the experiments

are larger than predicted by standard Gaussian

statistics; but less than a factor of 2 larger.
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Conclusion from the consistency study

This fit provided direct evidence of a significant

source of discrepancy associated with fixed-target

DIS experiments for large x at small Q. (Higher-twist

effects had been seen there previously; but not taken

into account in PDF fitting — at least by CTEQ.)

Removing those data by a kinematic cut makes the

average disagreement smaller, but it still does not

become consistent with the absolute Gaussian.

In hep-ph/0909.0268, I argue that this suggests a

“tolerance criterion”

∆χ2 ≈ (1× 1.64× 2)2 ≈ 10

for 90% confidence uncertainty estimation.

It is possible that other uncertainties in the analysis

require larger ∆χ2; but the experimental

inconsistencies do not.
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Parametrization dependence

The PDF for each flavor at µ0 is an unknown

continuous function of x. We approximate it by

some simple analytic form with 5 or 6 free

parameters. This introduces a systematic error

called parametrization dependence.

How big is the parametrization dependence?

Let parameter z represents a physical observable,

after a linear transformation to make central value 0

and S.D. 1, e.g.

σtt̄ = a + b z

or

g(x, µ) = c + d z .

Let parameter y represent the displacement along a

direction in an expanded fitting space that was

neglected in the parametrization choice.

Contours of χ2 = 3010, 3020, 3030,. . . , 3110 with

minimum χ2 = 3000 for two hypothetical cases:
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Hypothetical parametrization dependence

Minimum is at χ2 = 3000. Contours show

χ2 = 3010, 3020, 3030,. . . , 3110.

For y = 0, the minimum of χ2 is 3005 at z = 0. Error

bars show the ∆χ2 = 10 error limits along y = 0.

Parametrizations are historically considered to be

adequate if more elaborate ones only lower χ2 by a

few units. In these examples, introducing the

parameter y would lower χ2 by only 5 out of 3000.

The true uncertainty is much larger than the

∆χ2 = 10 error limits calculated with y = 0 in the

second example. Does this happen in practice??
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Parametrization dependence at small x

Shaded area is ∆χ2 = 10 uncertainty using standard

parametrization

a0 x
a1 (1− x)a2 × (smooth function of x)

Curves show results of alternative parametrizations

that enhance or suppress the gluon at small x

In a region where the data provide little constraint,

the true uncertainty is much larger than is predicted

by ∆χ2 = 10 — or even ∆χ2 = 100 — because of

parametrization dependence.
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Parametrization dependence at large x

Our standard fitting procedure adds a penalty to χ2

to force “expected” behavior for the gluon

distribution at large x: 1.5 < a2 < 10 in

x g(x, µ0) = a0 x
a1 (1− x)a2 exp(a3

√
x+ a4x+ a5x

2)

Figure shows the ∆χ2 = 10 uncertainty range.

Curves show a2 = 54 (which produces ∆χ2 = 10)

and a2 = 0 (which requires almost zero ∆χ2)

Non-perturbative theory constraints are important at

large x.

Even without the constraints, it is difficult to include

the full range of uncertainty at large x using the

Hessian method.
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Parametrization dependence at intermediate
x

Gluon uncertainty bands with ∆χ2 = 10.

Curves show results from alternative

parametrizations with up to 8 additional parameters

in the full global fit.

Added freedom reduces χ2 by as much as 10 — 15,

but change in the gluon distribution is small in the

regions where it is well-determined.

Added freedom only makes larger changes at

extreme x — where we already knew there is

substantial parametrization dependence.
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“Time dependence” of PDFs

∆χ2 = 10 uncertainties in a recent fit (all weights

1.0; run II jet data only).

CTEQ6.6 central fit: used run I jet data only;

different weights for different experiments.

CT09 central fit: used both run I and run II jet data;

different weights for different experiments.

It is clear that ∆χ2 = 1 for 68% confidence would be

overly optimistic.

It appears that ∆χ2 = 10 may be (nearly?) large

enough, in regions where the data provide

substantial constraint.

(Larger time-dependence would be seen for earlier

PDFs because of improving treatments, e.g. of

heavy quarks after CTEQ6.1.)
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“Space dependence” of PDFs

∆χ2 = 10 uncertainties in a recent fit (All weights

1.0; no run I jet data, αs(mZ) = 0.12018 to match

MSTW.)

MSTW2008 central fit

Again it is clear that ∆χ2 = 1 for 68% confidence

would be overly optimistic.

Again it appears that ∆χ2 = 10 may be (nearly?)

big enough in regions where the data provide

substantial constraint.
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Comment # 1: Closure

∆χ2 = 10 uncertainties in a recent fit with all

weights 1, including run II inclusive jet data only).

Weight 5 for D0 inclusive jet data.

Weight 5 for CDF inclusive jet data.

Old interpretation: these two similar experiments

seem to pull in rather different directions, which

suggests the need for a large ∆χ2 on the basis of

disagreements between experiments.

New interpretation: the two experiments are in

reasonable agreement with each other; but the

large-x behavior is very undefined, so unimportant

differences between data sets pick out different but

equally-likely large-x behaviors.
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Comment # 2: 90% vs. 68% confidence

Ratio of uncertainties for gluon calculated with

∆χ2 = 100 to uncertainty calculated with ∆χ2 = 10.

Gaussian expectation is 1.645 (dotted line)

The ∆χ2 = 100 choice has a good feature of

expanding the uncertainty more in the regions where

it needs to be expanded because of the

parametrization dependence (very large and very

small x).
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Comment # 3: gluon uncertainty at small x

Showed earlier that g(x) is extremely uncertain at

low x at low µ: Figures show standard ∆χ2 = 10

uncertainties, but curves show acceptable results

from more flexible parametrizations that enhance or

suppress the gluon at small x.

The very large uncertainties disappear at increased

µ, where g(x) is dominated by splitting from the

known regions at higher x.

These distributions will be probed by µ+µ− in LHCb.
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Thanks

I have enjoyed many constructive discussions and

correspondence with

CTEQ/TEA group: Huston, Lai, Nadolsky, Yuan

NNPDF group: Forte, Guffanti

MSTW group: Thorne

H1/ZEUS: Mandy Cooper-Sarkar

Statistics expert: Louis Lyons
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