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1. Consistency between data sets used in PDF

fitting (arXiv:0909.0268,arXiv:0904.2425)

2. Uncertainties caused by parametrization choices

(arXiv:0909.5176: heavily revised version in

progress)
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Parametrization dependence: Uncertainty
of d(x)/u(x) at large x

((Slide from a CTEQ6.5–era talk that shows large

parametrization uncertainty of the kind discussed in

Thia’s talk.))

Black: CTEQ6.5 central fit

Green: 40 CTEQ6.5 eigenvector uncertainty sets

Red: results from equally-acceptable alternative

parametrizations

In CTEQ6.5, we assumed dv(x) ∼ (1− x)ad and

uv(x) ∼ (1− x)au at x→ 1, with constraint
ad − au = +1. This constraint was imposed (for the

best fit and for all eigenvector sets) because ad − au

is very weakly constrained by χ2 (“flat direction”)

Red dotted curves are fits made with a variety of
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choices for ad − au. They are all very good fits, so

the behavior of d/u is completely unconstrained by

the experiments included here for x > 0.8.



Measuring internal consistency of the fit

Partition the data into two subsets:

χ2 = χ2S + χ2
S

where subset S can, for example, be chosen as

• any single experiment (reported here)

• all of the jet experiments

• all of the low-Q data points (to look for higher
twist)

• all of the low-x data points (to look for BFKL)

• all experiments with deuteron corrections

• all of the neutrino experiments (to look for
nuclear corrections)

A method I call Data Set Diagonalization which was

first proposed in my HERA/LHC talk in March 2004

directly answers the questions

1. What does subset S measure?

2. Is subset S consistent with the rest of the data?
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Data Set Diagonalization

The DSD method is an extension of the Hessian

method. It works by transforming the contributions

χ2S and χ
2
S
to χ2 into a form where they can be

interpreted as independent measurements of N

quantities.

The essential point is that the linear transformation

that leads to

χ2 = χ20 +
N
∑

i=1

z 2i

is not unique, because any further orthogonal

transform of the zi will preserve it. Such an

orthogonal transformation can be defined using the

eigenvectors of any symmetric matrix. After this

second linear transformation of the coordinates, the

chosen symmetric matrix will then be diagonal in the

resulting new coordinates.

This freedom is exploited in the DSD method by

taking the symmetric matrix from the quadratic form

that describes the contribution to χ2 from the subset

S of the data that is chosen for study. Then . . .
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DSD method – continued

χ2 = χ2S + χ2S̄ + const

χ2S =
N
∑

i=1

[(zi −Ai)/Bi]
2

χ2S̄ =
N
∑

i=1

[(zi − Ci)/Di]
2

Thus the subset S of the data and its complement S

take the form of independent measurements of the

N variables zi, with results

S : zi = Ai ± Bi

S : zi = Ci ± Di
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DSD method – continued

χ2 = χ2S + χ2S̄ + const

χ2S =
N
∑

i=1

[(zi −Ai)/Bi]
2

χ2S̄ =
N
∑

i=1

[(zi − Ci)/Di]
2

This decomposition answers the question “What is

measured by data subset S?” — it is those

parameters zi for which the Bi ∼< Di. The fraction of

the measurement of zi contributed by S is

γi =
D 2

i

B 2
i + D 2

i

.

The decomposition also measures the compatibility

between S and the rest of the data S: the

disagreement between the two is

σi =
|Ai − Ci|

√

(B 2
i + C 2

i )
.
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Experiments that provide at least one
measurement with γi > 0.1

Process Expt N
∑

i
γi

e+ p→ e+X H1 NC 115 2.10

e− p→ e−X H1 NC 126 0.30
e+ p→ e+X H1 NC 147 0.37
e+ p→ e+X H1 CC 25 0.24
e− p→ ν X H1 CC 28 0.13

e+ p→ e+X ZEUS NC 227 1.69

e+ p→ e+X ZEUS NC 90 0.36
e+ p→ ν X ZEUS CC 29 0.55
e+ p→ ν̄ X ZEUS CC 30 0.32
e− p→ ν X ZEUS CC 26 0.12

µ p→ µX BCDMS F2p 339 2.21

µd→ µX BCDMS F2d 251 0.90
µ p→ µX NMC F2p 201 0.49

µ p/d→ µX NMC F2p/d 123 2.17

pCu→ µ+µ−X E605 119 1.52

pp, pd→ µ+µ−X E866 pp/pd 15 1.92
pp→ µ+µ−X E866 pp 184 1.52

p̄p→ (W→ `ν)X CDF I Wasy 11 0.91

p̄p→ (W→ `ν)X CDF II Wasy 11 0.16
p̄ p→ jetX CDF II Jet 72 0.92
p̄ p→ jetX D0 II Jet 110 0.68

ν Fe→ µX NuTeV F2 69 0.84

ν Fe→ µX NuTeV F3 86 0.61
ν Fe→ µX CDHSW 96 0.13
ν Fe→ µX CDHSW 85 0.11

ν Fe→ µ+µ−X NuTeV 38 0.68
ν̄ Fe→ µ+µ−X NuTeV 33 0.56
ν Fe→ µ+µ−X CCFR 40 0.41
ν̄ Fe→ µ+µ−X CCFR 38 0.14

Total of
∑

γi = 23 is close to the actual number of fit parameters.

H1+ZEUS measure 6.2 of the parameters — fewer than in HERA-only fits
as expected.
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Consistency tests: measurements that
conflict strongly with the other experiments

(σi > 3) are shown in red.

Expt
∑

i
γi (γ1, σ1), (γ2, σ2), . . .

H1 NC 2.10 (0.72, 0.01) (0.59, 3.02) (0.43, 0.20) (0.36, 1.37)

H1 NC 0.30 (0.30, 0.02)
H1 NC 0.37 (0.21, 0.06) (0.16, 0.83)
H1 CC 0.24 (0.24, 0.00)

H1 CC 0.13 (0.13, 0.00)

ZEUS NC 1.69 (0.45,3.13) (0.42, 0.32) (0.35,3.20) (0.29, 0.80)

(0.18, 0.64)
ZEUS NC 0.36 (0.22, 0.01) (0.14, 1.61)
ZEUS CC 0.55 (0.55, 0.04)
ZEUS CC 0.32 (0.32, 0.10)

ZEUS CC 0.12 (0.12, 0.02)

BCDMS F2p 2.21 (0.68, 0.50) (0.63, 1.63) (0.43, 0.80) (0.34,4.93)

(0.13, 0.94)
BCDMS F2d 0.90 (0.32, 0.67) (0.24, 2.49) (0.19, 2.09) (0.16,5.22)

NMC F2p 0.49 (0.20,4.56) (0.17,4.76) (0.12, 0.50)
NMC F2p/d 2.17 (0.61, 1.11) (0.56,3.60) (0.43, 0.90) (0.36, 0.79)

(0.21, 1.41)

E605 DY 1.52 (0.91, 1.29) (0.38, 1.12) (0.23, 0.31)

E866 pp/pd 1.92 (0.88, 0.57) (0.69, 1.15) (0.35, 1.80)
E866 pp 1.52 (0.75, 0.04) (0.39, 1.79) (0.23, 1.94) (0.14,3.57)

CDF Wasy 0.91 (0.57, 0.33) (0.34, 0.51)

CDF Wasy 0.16 (0.16, 2.84)
CDF Jet 0.92 (0.48, 0.47) (0.44,3.86)
D0 Jet 0.68 (0.39, 1.70) (0.29, 0.76)

NuTeV F2 0.84 (0.37, 2.75) (0.29, 0.42) (0.18, 0.97)

NuTeV F3 0.61 (0.30, 0.50) (0.16, 1.35) (0.15, 0.30)
CDHSW 0.13 (0.13, 0.04)
CDHSW 0.11 (0.11, 1.32)
NuTeV 0.68 (0.39, 0.31) (0.29, 0.66)
NuTeV 0.56 (0.32, 0.18) (0.24, 2.56)
CCFR 0.41 (0.24, 1.37) (0.17, 0.12)
CCFR 0.14 (0.14, 0.79)
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Consistency of measurements in a global fit

Histogram of the consistency measure σi for the 68

significant (γi > 0.1) measurements provided by the

37 experiments in a typical global fit.

Solid curve is the absolute Gaussian prediction

dP

dσ
=

√

2

π
exp(−σ2/2) .

Dashed curve is a scaled Gaussian with c = 1.9 :

dP

dσ
=

√

2

π c2
exp(−σ2/(2 c2))

Conclude: Disagreements among the experiments

are larger than predicted by standard Gaussian

statistics; but less than a factor of 2 larger.
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Conclusion from the consistency study

This fit provided direct evidence of a significant

source of discrepancy associated with fixed-target

DIS experiments for large x at small Q. (Higher-twist

effects had been seen there previously; but not taken

into account in PDF fitting — at least by CTEQ.)

Removing those data by a kinematic cut makes the

average disagreement smaller, but it still does not

become consistent with the absolute Gaussian.

In hep-ph/0909.0268, I argue that this suggests a

“tolerance criterion”

∆χ2 ≈ (1× 1.64× 2)2 ≈ 10

for 90% confidence uncertainty estimation.

It is possible that other uncertainties in the analysis

require larger ∆χ2; but the experimental

inconsistencies do not.
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Parametrization dependence

The PDF for each flavor at µ0 is an unknown

continuous function of x. We approximate it by

some simple analytic form with 5 or 6 free

parameters. This introduces a systematic error

called parametrization dependence.

How big is the parametrization dependence?

Let parameter z represents a physical observable,

after a linear transformation to make central value 0

and S.D. 1, e.g.

σtt̄ = a + b z

or

g(x, µ) = c + d z .

Let parameter y represent the displacement along a

direction in an expanded fitting space that was

neglected in the parametrization choice.

Contours of χ2 = 3010, 3020, 3030,. . . , 3110 with

minimum χ2 = 3000 for two hypothetical cases:

11



Hypothetical parametrization dependence

Minimum is at χ2 = 3000. Contours show

χ2 = 3010, 3020, 3030,. . . , 3110.

For y = 0, the minimum of χ2 is 3005 at z = 0. Error

bars show the ∆χ2 = 10 error limits along y = 0.

Parametrizations are historically considered to be

adequate if more elaborate ones only lower χ2 by a

few units. In one of these examples, introducing the

parameter y would lower χ2 by only 5 out of 3000.

The true uncertainty can be much larger than the

∆χ2 = 10 error limits calculated with y = 0 because

of parametrization dependence. Does this happen in

practice??
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Parametrization dependence at small x

Shaded area is ∆χ2 = 10 uncertainty using standard

parametrization

a0 x
a1 (1− x)a2 × (smooth function of x)

Curves show results of alternative parametrizations

that enhance or suppress the gluon at small x

In a region where the data provide little constraint,

the true uncertainty is much larger than is predicted

by ∆χ2 = 10 — or even ∆χ2 = 100 — because of

parametrization dependence.
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Parametrization dependence at large x

Our standard fitting procedure adds a penalty to χ2

to force “expected” behavior for the gluon

distribution at large x: 1.5 < a2 < 10 in

x g(x, µ0) = a0 x
a1 (1− x)a2 exp(a3

√
x+ a4x+ a5x

2)

Figure shows the ∆χ2 = 10 uncertainty range.

Curves show a2 = 54 (which produces ∆χ
2 = 10)

and a2 = 0 (which requires almost zero ∆χ
2)

Non-perturbative theory constraints are important at

large x.

Even without the constraints, it is difficult to include

the full range of uncertainty at large x using the

Hessian method.
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Chebyshev Polynomial method

Typical recent gluon parametrization:

x g(x) = a0 x
a1 (1− x)a2 ep(x)

where

p(x) = −9.53
√
x+3.86x+0.62x2

Attractive features:

• Smooth function

• Power-law dependence at x→ 0 — Regge theory

((DGLAP issue?))

• Subleading terms down by ∼ x0.5 at x→ 0 —
more Regge theory

• g(x) positive definite ((possibly too strong))

Natural to add more flexibility to remove systematic

error caused by the choice of form, by including

terms with additional powers of
√
x.
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Typical recent gluon parametrization:

x g(x) = a0 x
a1 (1− x)a2 ep(x)

where

p(x) = −9.53
√
x+3.86x+0.62x2

Problem: When more terms are included, the

coefficients quickly become large and the fit

becomes unstable.

Solution: Rewrite the polynomial as a sum of

Chebyshev polynomials: e.g.

p = 2.56T1(y) + 0.62T2(y) − 0.039T3(y) + 0.005T4(y)

where y = 1− 2√x.

Mathematically equivalent, but Chebyshev expansion

is systematic in terms of the scale of structures.

Coefficients remain small and decrease with order,

allowing many more terms to be included.
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Chebyshev vs. power laws

u3, u5, u7 T3(u), T5(u), T7(u)

Tn(u) = cos(nθ) where u = cos(θ).
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Chebyshev fits

Gluon uncertainty bands with ∆χ2 = 10.

Black: 24 fitting parameters

Red: 37 fitting parameters

• Small increase in range of uncertainty.

• Change in central fit

Green (58 parameters); blue (68 parameters)

Shows that Parametrization Dependence contributes

uncertainty that is larger than ∆χ2 = 10.
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“Time dependence” of PDFs

CTEQ6.6 uncertainties (∆χ2 = 100) compared to

some recent fits.
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Conclude: The ∆χ2 = 100 uncertainty estimate in

CTEQ6.6 was not overly conservative.
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