THE QUADRUPOLE TENSOR, OR DYADIC

The asymptotic electrostatic potential, far from a finite source $\rho(\mathbf{x})$, is given in Eq. (3.91) (in Sec. 3.8) as

$$V(\mathbf{x}) = \frac{1}{4\pi\epsilon_0} \left\{ \frac{q}{r} + \frac{\widehat{\mathbf{r}} \cdot \mathbf{p}}{r^2} + \frac{\widehat{\mathbf{r}} \cdot \mathcal{Q}_2 \cdot \widehat{\mathbf{r}}}{r^3} + \cdots \right\},\tag{1}$$

where

$$q = \int \rho(\mathbf{x}') d^3 x' = \text{monopole scalar (charge)}$$
(2)

$$\mathbf{p} = \int \mathbf{x}' \rho(\mathbf{x}') d^3 x' = \text{ dipole vector (moment)}$$
(3)

$$\mathcal{Q}_2 = \int \frac{1}{2} \left(3\mathbf{x}'\mathbf{x}' - r'^2 \mathbf{1} \right) \rho(\mathbf{x}') d^3 x' = \text{ quadrupole tensor} \quad (4)$$

Scalars and vectors are familiar. The quadrupole factor Q_2 is a tensor. In this note we'll study the quadrupole potential, which may be rewritten as

$$V^{(2)}(\mathbf{x}) = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{x} \cdot \mathcal{Q}_2 \cdot \mathbf{x}}{r^5}.$$
 (5)

 Q_2 is written in (4) using dyadic notation. What is the meaning of $\mathbf{x'x'}$? This is called a *dyadic product* (or *dyadic*, for short). And what is **1**? This is the unit dyadic. To understand these terms, let's consider some general definitions.

Given two vectors **A** and **B**, the dyadic product is a tensor

$$\mathcal{T} = \mathbf{AB}.\tag{6}$$

There is a notation here (AB) that perhaps has not been encountered before. It will be defined presently in terms of Cartesian components.

▶ A vector **A** has 3 Cartesian components A_x, A_y, A_z , and may be represented as a column vector,

$$\mathbf{A} : \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}. \tag{7}$$

In suffix notation, \mathbf{A} is denoted simply as A_i .

▶ A tensor \mathcal{T} has 9 components, and may be represented as a 3×3 matrix,

$$\mathcal{T} : \begin{pmatrix} T_{xx} & T_{xy} & T_{xz} \\ T_{yx} & T_{yy} & T_{yz} \\ T_{zx} & T_{zy} & T_{zz} \end{pmatrix}.$$
 (8)

In suffix notation, \mathcal{T} is denoted simply as T_{ij} .

▶ The 9 elements of the dyad AB are products of a component of A and a component of B,

$$\mathbf{AB} : \begin{pmatrix} A_x B_x & A_x B_y & A_x B_z \\ A_y B_x & A_y B_y & A_y B_z \\ A_z B_x & A_z B_y & A_z B_z \end{pmatrix}.$$
(9)

In suffix notation, AB is A_iB_j . We may regard AB as the matrix product of the column vector of A and the row vector of B

$$\begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} \begin{pmatrix} B_x & B_y & B_z \end{pmatrix} = \begin{pmatrix} A_x B_x & A_x B_y & A_x B_z \\ A_y B_x & A_y B_y & A_y B_z \\ A_z B_x & A_z B_y & A_z B_z \end{pmatrix}.$$
 (10)

(In contrast, the product of row **A** and column **B** is the scalar product $\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z$.)

▶ The matrix representation of the unit dyadic **1** is

$$\mathbf{1} : \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$
(11)

In suffix notation **1** is δ_{ij} .

With the above definitions we are ready to express the quadrupole term in $V(\mathbf{x})$ in terms of Cartesian components. The meaning of $\mathbf{x} \cdot \mathcal{Q}_2 \cdot \mathbf{x}$ is

$$\mathbf{x} \cdot \mathcal{Q}_{2} \cdot \mathbf{x} = (x \ y \ z) \begin{pmatrix} \mathcal{Q}_{xx} & \mathcal{Q}_{xy} & \mathcal{Q}_{xz} \\ \mathcal{Q}_{yx} & \mathcal{Q}_{yy} & \mathcal{Q}_{yz} \\ \mathcal{Q}_{zx} & \mathcal{Q}_{zy} & \mathcal{Q}_{zz} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$= x^{2} \mathcal{Q}_{xx} + y^{2} \mathcal{Q}_{yy} + z^{2} \mathcal{Q}_{zz} \qquad (12)$$
$$+ xy (\mathcal{Q}_{xy} + \mathcal{Q}_{yx}) + yz (\mathcal{Q}_{yz} + \mathcal{Q}_{zy}) + zx (\mathcal{Q}_{zx} + \mathcal{Q}_{xz}).$$

It is simpler in suffix notation,

$$\mathbf{x} \cdot \mathcal{Q}_2 \cdot \mathbf{x} = \sum_{i,j=1}^3 x_i \mathcal{Q}_{ij} x_j.$$
(13)

Remember, \mathcal{Q}_2 depends on the charge distribution but it does not depend on \mathbf{x} (the field point). Therefore $\mathbf{x} \cdot \mathcal{Q}_2 \cdot \mathbf{x}$ has only terms that are quadratic or bilinear in x, y, z. The quadrupole contribution to $V(\mathbf{x})$ is order R^{-3} if x, y, z are of order R. (The monopole term is order R^{-1} , and the dipole term is order R^{-2} .)

The integral in (4) may also be written in terms of Cartesian coordinates. (In (4) drop the prime on \mathbf{x}' for simplicity, but then don't confuse the source point (now \mathbf{x}) with the field point!) Remember that Q_2 is a tensor, so it has 9 components. The *ij* component is

$$\mathcal{Q}_{ij} = \int \frac{1}{2} \left(3x_i x_j - r^2 \delta_{ij} \right) \rho(\mathbf{x}) d^3 x; \tag{14}$$

that is,

$$\mathcal{Q}_{xx} = \frac{1}{2} \int (3x^2 - r^2) \rho(\mathbf{x}) d^3 x,$$

$$\mathcal{Q}_{xy} = \frac{1}{2} \int (3xy) \rho(\mathbf{x}) d^3 x,$$

and so forth. The Cartesian components of Q_2 are these second moments of $\rho(\mathbf{x})$.

The inertia tensor in mechanics

A similar mathematics appears in rotational dynamics.¹ The kinetic energy of a rotating body is

$$T = \frac{1}{2}\boldsymbol{\omega} \cdot \boldsymbol{\mathcal{I}} \cdot \boldsymbol{\omega} \tag{15}$$

where $\boldsymbol{\omega}$ = angular velocity, and \mathcal{I} = inertia tensor. Written in Cartesian components,

$$T = \frac{1}{2} \left[\omega_x^2 \mathcal{I}_{xx} + \omega_y^2 \mathcal{I}_{yy} + \omega_z^2 \mathcal{I}_{zz} + \omega_x \omega_y (\mathcal{I}_{xy} + \mathcal{I}_{yx}) + \omega_y \omega_z (\mathcal{I}_{yz} + \mathcal{I}_{zy}) + \omega_z \omega_x (\mathcal{I}_{zx} + \mathcal{I}_{xz}) \right].$$
(16)

The components of the inertia tensor (or dyadic) \mathcal{I} are second moments of the mass density $\rho_m(\mathbf{x})$,

$$\mathcal{I}_{ij} = \int \left(-x_i x_j + r^2 \delta_{ij}\right) \rho_m(\mathbf{x}) d^3 x; \qquad (17)$$
$$\mathcal{I}_{xx} = \int \left(-x^2 + r^2\right) \rho_m(\mathbf{x}) d^3 x,$$
$$\mathcal{I}_{xy} = \int \left(-xy\right) \rho_m(\mathbf{x}) d^3 x,$$

and so forth. Please note the similarities to Eqs. (12) and (14).

Interesting symmetric cases

• If $\rho(\mathbf{x})$ is spherically symmetric, i.e., $\rho(\mathbf{x}) = \rho(r)$, then $Q_2 = 0$. (Can you prove this?)

• If $\rho(\mathbf{x})$ is axially symmetric, i.e., $\rho(\mathbf{x}) = \rho(r, z)$ (in cylindrical coordinates) then the matrix representation of Q_2 has the form

$$Q_2 = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & -2A \end{pmatrix}.$$
 (18)

[Can you prove this, and derive a formula for A? Remember that in (14) the notation is $r^2 = x^2 + y^2 + z^2$, but in cylindrical coordinates $\rho(r, z)$ means $\rho(\sqrt{x^2 + y^2}, z)$.]

Final identity For any $\rho(\mathbf{x})$, the matrix of \mathcal{Q}_2 is traceless,

$$\mathcal{Q}_{xx} + \mathcal{Q}_{yy} + \mathcal{Q}_{zz} = 0. \tag{19}$$

(Can you prove this?)

Exercise Consider an axially symmetric pure quadrupole, as in (18), and assume A > 0. Show that the electric field directions are radially toward the origin for points on the positive or negative z axis, and radially away from the origin for points on the xy plane. Is that consistent with Figure 3.15?

¹Leonardo da Vinci said "Nature is economical and her economy is quantitative." The same mathematics applies to different topics in physics.