Electromagnetism

The Quadrupole Tensor, or Dyadic
The asymptotic electrostatic potential, far from a finite source $\rho(\mathbf{x})$, is given in Eq. (3.91) (in Sec. 3.8) as

$$
\begin{equation*}
V(\mathbf{x})=\frac{1}{4 \pi \epsilon_{0}}\left\{\frac{q}{r}+\frac{\widehat{\mathbf{r}} \cdot \mathbf{p}}{r^{2}}+\frac{\widehat{\mathbf{r}} \cdot \mathcal{Q}_{2} \cdot \widehat{\mathbf{r}}}{r^{3}}+\cdots\right\} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
q & =\int \rho\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}=\text { monopole scalar (charge) } \tag{2}\\
\mathbf{p} & =\int \mathbf{x}^{\prime} \rho\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}=\text { dipole vector (moment) } \tag{3}\\
\mathcal{Q}_{2} & =\int \frac{1}{2}\left(3 \mathbf{x}^{\prime} \mathbf{x}^{\prime}-r^{\prime 2} \mathbf{1}\right) \rho\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}=\text { quadrupole tensor } \tag{4}
\end{align*}
$$

Scalars and vectors are familiar. The quadrupole factor \mathcal{Q}_{2} is a tensor. In this note we'll study the quadrupole potential, which may be rewritten as

$$
\begin{equation*}
V^{(2)}(\mathbf{x})=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathbf{x} \cdot \mathcal{Q}_{2} \cdot \mathbf{x}}{r^{5}} \tag{5}
\end{equation*}
$$

\mathcal{Q}_{2} is written in (4) using dyadic notation. What is the meaning of $\mathbf{x}^{\prime} \mathbf{x}^{\prime}$? This is called a dyadic product (or dyadic, for short). And what is $\mathbf{1}$? This is the unit dyadic. To understand these terms, let's consider some general definitions.

Given two vectors \mathbf{A} and \mathbf{B}, the dyadic product is a tensor

$$
\begin{equation*}
\mathcal{T}=\mathbf{A B} \tag{6}
\end{equation*}
$$

There is a notation here ($\mathbf{A B}$) that perhaps has not been encountered before. It will be defined presently in terms of Cartesian components.

- A vector \mathbf{A} has 3 Cartesian components A_{x}, A_{y}, A_{z}, and may be represented as a column vector,

$$
\mathbf{A}:\left(\begin{array}{c}
A_{x} \tag{7}\\
A_{y} \\
A_{z}
\end{array}\right)
$$

In suffix notation, \mathbf{A} is denoted simply as A_{i}.

- A tensor \mathcal{T} has 9 components, and may be represented as a 3×3 matrix,

$$
\mathcal{T}:\left(\begin{array}{lll}
T_{x x} & T_{x y} & T_{x z} \tag{8}\\
T_{y x} & T_{y y} & T_{y z} \\
T_{z x} & T_{z y} & T_{z z}
\end{array}\right)
$$

In suffix notation, \mathcal{T} is denoted simply as $T_{i j}$.

- The 9 elements of the dyad $\mathbf{A B}$ are products of a component of \mathbf{A} and a component of \mathbf{B},

$$
\mathbf{A B}:\left(\begin{array}{lll}
A_{x} B_{x} & A_{x} B_{y} & A_{x} B_{z} \tag{9}\\
A_{y} B_{x} & A_{y} B_{y} & A_{y} B_{z} \\
A_{z} B_{x} & A_{z} B_{y} & A_{z} B_{z}
\end{array}\right) .
$$

In suffix notation, $\mathbf{A B}$ is $A_{i} B_{j}$. We may regard $\mathbf{A B}$ as the matrix product of the column vector of \mathbf{A} and the row vector of \mathbf{B}

$$
\left(\begin{array}{l}
A_{x} \tag{10}\\
A_{y} \\
A_{z}
\end{array}\right)\left(\begin{array}{lll}
B_{x} & B_{y} & B_{z}
\end{array}\right)=\left(\begin{array}{lll}
A_{x} B_{x} & A_{x} B_{y} & A_{x} B_{z} \\
A_{y} B_{x} & A_{y} B_{y} & A_{y} B_{z} \\
A_{z} B_{x} & A_{z} B_{y} & A_{z} B_{z}
\end{array}\right)
$$

(In contrast, the product of row \mathbf{A} and column \mathbf{B} is the scalar product $\left.\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}.\right)$

- The matrix representation of the unit dyadic $\mathbf{1}$ is

$$
\mathbf{1}:\left(\begin{array}{lll}
1 & 0 & 0 \tag{11}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

In suffix notation $\mathbf{1}$ is $\delta_{i j}$.
With the above definitions we are ready to express the quadrupole term in $V(\mathbf{x})$ in terms of Cartesian components. The meaning of $\mathbf{x} \cdot \mathcal{Q}_{2} \cdot \mathbf{x}$ is

$$
\begin{align*}
\mathbf{x} \cdot \mathcal{Q}_{2} \cdot \mathbf{x}= & \left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{lll}
\mathcal{Q}_{x x} & \mathcal{Q}_{x y} & \mathcal{Q}_{x z} \\
\mathcal{Q}_{y x} & \mathcal{Q}_{y y} & \mathcal{Q}_{y z} \\
\mathcal{Q}_{z x} & \mathcal{Q}_{z y} & \mathcal{Q}_{z z}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
= & x^{2} \mathcal{Q}_{x x}+y^{2} \mathcal{Q}_{y y}+z^{2} \mathcal{Q}_{z z} \tag{12}\\
& +x y\left(\mathcal{Q}_{x y}+\mathcal{Q}_{y x}\right)+y z\left(\mathcal{Q}_{y z}+\mathcal{Q}_{z y}\right)+z x\left(\mathcal{Q}_{z x}+\mathcal{Q}_{x z}\right)
\end{align*}
$$

It is simpler in suffix notation,

$$
\begin{equation*}
\mathbf{x} \cdot \mathcal{Q}_{2} \cdot \mathbf{x}=\sum_{i, j=1}^{3} x_{i} \mathcal{Q}_{i j} x_{j} \tag{13}
\end{equation*}
$$

Remember, \mathcal{Q}_{2} depends on the charge distribution but it does not depend on \mathbf{x} (the field point). Therefore $\mathbf{x} \cdot \mathcal{Q}_{2} \cdot \mathbf{x}$ has only terms that are quadratic or bilinear in x, y, z. The quadrupole contribution to $V(\mathbf{x})$ is order R^{-3} if x, y, z are of order R. (The monopole term is order R^{-1}, and the dipole term is order R^{-2}.)

The integral in (4) may also be written in terms of Cartesian coordinates. (In (4) drop the prime on \mathbf{x}^{\prime} for simplicity, but then don't confuse the source point (now \mathbf{x}) with the field point!) Remember that \mathcal{Q}_{2} is a tensor, so it has 9 components. The $i j$ component is

$$
\begin{equation*}
\mathcal{Q}_{i j}=\int \frac{1}{2}\left(3 x_{i} x_{j}-r^{2} \delta_{i j}\right) \rho(\mathbf{x}) d^{3} x \tag{14}
\end{equation*}
$$

that is,

$$
\begin{aligned}
\mathcal{Q}_{x x} & =\frac{1}{2} \int\left(3 x^{2}-r^{2}\right) \rho(\mathbf{x}) d^{3} x \\
\mathcal{Q}_{x y} & =\frac{1}{2} \int(3 x y) \rho(\mathbf{x}) d^{3} x
\end{aligned}
$$

and so forth. The Cartesian components of \mathcal{Q}_{2} are these second moments of $\rho(\mathbf{x})$.

The inertia tensor in mechanics
A similar mathematics appears in rotational dynamics. ${ }^{1}$ The kinetic energy of a rotating body is

$$
\begin{equation*}
T=\frac{1}{2} \boldsymbol{\omega} \cdot \mathcal{I} \cdot \boldsymbol{\omega} \tag{15}
\end{equation*}
$$

where $\boldsymbol{\omega}=$ angular velocity, and $\mathcal{I}=$ inertia tensor. Written in Cartesian components,

$$
\begin{align*}
T= & \frac{1}{2}\left[\omega_{x}^{2} \mathcal{I}_{x x}+\omega_{y}^{2} \mathcal{I}_{y y}+\omega_{z}^{2} \mathcal{I}_{z z}\right. \tag{16}\\
& \left.+\omega_{x} \omega_{y}\left(\mathcal{I}_{x y}+\mathcal{I}_{y x}\right)+\omega_{y} \omega_{z}\left(\mathcal{I}_{y z}+\mathcal{I}_{z y}\right)+\omega_{z} \omega_{x}\left(\mathcal{I}_{z x}+\mathcal{I}_{x z}\right)\right]
\end{align*}
$$

The components of the inertia tensor (or dyadic) \mathcal{I} are second moments of the mass density $\rho_{m}(\mathbf{x})$,

$$
\begin{align*}
& \mathcal{I}_{i j}=\int\left(-x_{i} x_{j}+r^{2} \delta_{i j}\right) \rho_{m}(\mathbf{x}) d^{3} x \tag{17}\\
& \mathcal{I}_{x x}=\int\left(-x^{2}+r^{2}\right) \rho_{m}(\mathbf{x}) d^{3} x \\
& \mathcal{I}_{x y}=\int(-x y) \rho_{m}(\mathbf{x}) d^{3} x
\end{align*}
$$

and so forth. Please note the similarities to Eqs. (12) and (14).

Interesting symmetric cases

- If $\rho(\mathbf{x})$ is spherically symmetric, i.e., $\rho(\mathbf{x})=\rho(r)$, then $\mathcal{Q}_{2}=0$. (Can you prove this?)
- If $\rho(\mathbf{x})$ is axially symmetric, i.e., $\rho(\mathbf{x})=\rho(r, z)$ (in cylindrical coordinates) then the matrix representation of \mathcal{Q}_{2} has the form

$$
\mathcal{Q}_{2}=\left(\begin{array}{ccc}
A & 0 & 0 \tag{18}\\
0 & A & 0 \\
0 & 0 & -2 A
\end{array}\right)
$$

[Can you prove this, and derive a formula for A ? Remember that in (14) the notation is $r^{2}=x^{2}+y^{2}+z^{2}$, but in cylindrical coordinates $\rho(r, z)$ means $\rho\left(\sqrt{x^{2}+y^{2}}, z\right)$.]

Final identity For any $\rho(\mathbf{x})$, the matrix of \mathcal{Q}_{2} is traceless,

$$
\begin{equation*}
\mathcal{Q}_{x x}+\mathcal{Q}_{y y}+\mathcal{Q}_{z z}=0 \tag{19}
\end{equation*}
$$

(Can you prove this?)

Exercise Consider an axially symmetric pure quadrupole, as in (18), and assume $A>0$. Show that the electric field directions are radially toward the origin for points on the positive or negative z axis, and radially away from the origin for points on the $x y$ plane. Is that consistent with Figure 3.15?

[^0]
[^0]: ${ }^{1}$ Leonardo da Vinci said "Nature is economical and her economy is quantitative." The same mathematics applies to different topics in physics.

