5. General Methods for Laplace’s Equation

Self-test answers

1. Using separation of variables and the boundary conditions, the potential must have the form

\[V(x) = \sum_{m,n} c_{mn} \sin \left(\frac{m\pi x}{a} \right) \sin \left(\frac{n\pi y}{a} \right) \cosh \gamma_{mn} z \cosh \gamma_{mn} L/2 \]

where \(\gamma_{mn}^2 = \left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{b} \right)^2 \). The end conditions require

\[V_0 = \sum_{m,n} c_{mn} \sin \left(\frac{m\pi x}{a} \right) \sin \left(\frac{n\pi y}{a} \right) \]

which must be used to determine the constant coefficients \(c_{mn} \). The relevant orthogonality conditions involve integrals with \(0 \leq x \leq a \) and \(0 \leq y \leq b \). Then, projecting out \(c_{mn} \),

\[c_{mn} = \frac{4}{ab} \int_0^a \int_0^b \sin \left(\frac{m\pi x}{a} \right) \sin \left(\frac{n\pi y}{a} \right) V_0 \, dx \, dy \]

\[= \begin{cases}
16V_0 & \text{if } m \text{ and } n \text{ are odd}, \\
\frac{\pi^2 ab mn}{1} & 0, \text{ otherwise.}
\end{cases} \]

2. For \(r \geq a \) the solution of Laplace’s equation is

\[V(r, \theta) = \sum_{\ell=0}^{\infty} \left(A_\ell r^\ell + B_\ell r^{-\ell-1} \right) P_\ell(\cos \theta). \]

The term with \(\ell = 1 \) is

\[A_1 r \cos \theta + B_1 \frac{\cos \theta}{r^2}. \]

We must set \(A_1 = -E_0 \) to get the potential \(-E_0z\) of the applied field. Then the boundary condition \(V(a, \theta) = 0 \) implies \(B_1 = E_0 a^3 \). No other \(\ell \) values are needed to satisfy the boundary conditions, so by the uniqueness theorem the potential is

\[V(r, \theta) = -E_0 r \cos \theta + \frac{E_0 a^3}{r^2} \cos \theta. \]

3. (a) \(V(x, y) = x^2 - y^2 + \text{constant} \). The equipotentials are hyperbolas with asymptotes \(y = -x \) and \(y = x \). The boundary-value problem corresponding to this potential is charged conducting half planes on the orthogonal surfaces \(y = -x \) and \(y = x \).

(b) \(V(x, y) = 2xy + \text{constant} \). The equipotentials are hyperbolas with asymptotes \(y = 0 \) and \(x = 0 \). The boundary value problem corresponding to this potential is charged conducting half planes on the positive \(x \) and \(y \) axes.