8. Magnetostatics

Chapter Summary

► The magnetic field $\mathbf{B}(\mathbf{x})$ may be defined by the force it exerts on a moving charge, $\mathbf{F}_{\text{mag}} = q\mathbf{v} \times \mathbf{B}$. The magnetic force is $\perp \mathbf{B}$, which leads to devices in which charged particles move on circular orbits, e.g., the cyclotron and the mass spectrometer. (See Section 8.2.)

► **Biot-Savart law.** A constant electric current produces a magnetic field,

$$
\mathbf{B}(\mathbf{x}) = \mu_0 \int \frac{\mathbf{J}(\mathbf{x}') \times (\mathbf{x} - \mathbf{x}')}{4\pi |\mathbf{x} - \mathbf{x}'|^3} d^3x',
$$

where $\mathbf{J}(\mathbf{x}')$ is the current density at \mathbf{x}'. In a more concise notation,

$$
d\mathbf{B} = \frac{\mu_0 I d\ell \times \hat{\mathbf{r}}}{4\pi r^2}.
$$

Examples 5 and 6 illustrate calculations of \mathbf{B} by integration.

► **Ampère’s law.** The field equation relating $\mathbf{B}(\mathbf{x})$ and $\mathbf{J}(\mathbf{x})$ may be expressed as a PDE,

$$
\nabla \times \mathbf{B} = \mu_0 \mathbf{J}; \quad \text{(static)}
$$

or, as the circuital law,

$$
\oint_C \mathbf{B} \cdot d\mathbf{\ell} = \mu_0 I \quad \text{(static)}
$$

where I is the current through the arbitrary closed curve C. Examples 7 and 8 illustrate calculations of \mathbf{B} from the circuital law.

► The magnetic field produced by current I in a long straight wire is

$$
\mathbf{B}(\mathbf{x}) = \frac{\mu_0 I}{2\pi r} \hat{\phi}.
$$

► The magnetic field inside a densely wound solenoid with current I is

$$
\mathbf{B} = \mu_0 nI \hat{\mathbf{k}} \quad \text{where } n = \text{number of turns per unit length}. \quad (\hat{\mathbf{k}} \text{ is the unit vector of the solenoid axis})
$$

► **Vector potential.** The magnetic field obeys $\nabla \cdot \mathbf{B} = 0$. Therefore there exists a function $\mathbf{A}(\mathbf{x})$ such that $\mathbf{B} = \nabla \times \mathbf{A}$.

► **Magnetic dipole.** The dipole moment of a finite current distribution is defined by $\mathbf{m} = \frac{1}{2} \int \mathbf{x} \times \mathbf{J} d^3x$. The asymptotic vector potential, if \mathbf{m} is nonzero, is

$$
\mathbf{A}(\mathbf{x}) = \frac{\mu_0 \mathbf{m} \times \hat{\mathbf{r}}}{4\pi r^2}.
$$