Magnetic Field of a Bar Magnet

Everyone has played with magnets and felt the mystery of their forces. N and S poles attract; N poles repel and S poles repel. These forces come from the magnetic field $\mathbf{B}(\mathbf{x})$. What is the magnetic field of a bar magnet?
Electric current is one basic source of $\mathbf{B}(\mathbf{x})$, but the field of a bar magnet comes directly from the atoms - from electron spin and orbital states. In a ferromagnet crystal, the exchange force (a quantum effect of electrons) causes atomic magnetic moments to align, so that all moments within a single magnetic domain point in the same direction. If the many domains in a sample have a preferred direction, the sample is magnetized.

Imagine a perfectly magnetized bar of iron. The magnetization $\mathbf{M}(\mathbf{x})$, defined as the dipole moment density, is a constant, $\mathbf{M}=M_{0} \widehat{\mathbf{k}}$. The vector potential is

$$
\begin{equation*}
\mathbf{A}(\mathbf{x})=\int \frac{\mu_{0} \mathbf{M} \times\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{4 \pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}} d^{3} x^{\prime} \tag{1}
\end{equation*}
$$

[The potential of a single dipole is Eq. (8.77); the integrand in (1) is just that potential for the elemental dipole $\mathbf{M} d^{3} x^{\prime}$.] We could try to evaluate the integral, and then $\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}$, but it is simpler to rewrite it in a clever way. Equation (9.11) shows that $\mathbf{A}(\mathbf{x})$ is just the same as if there exists a current $\mathbf{J}_{\mathrm{b}} \equiv \boldsymbol{\nabla} \times \mathbf{M}$ and a surface current $\mathbf{K}_{\mathrm{b}} \equiv \mathbf{M} \times \widehat{\mathbf{n}}$. These effective currents are bound currents, i.e., bound within the atoms. For our ideal bar magnet, $\mathbf{J}_{\mathrm{b}}=0$ because $\mathbf{M}(\mathbf{x})$ is constant; and $\mathbf{K}_{\mathrm{b}}=M_{0} \widehat{\boldsymbol{\phi}}$. The azimuthal bound surface current may be considered to be the origin of the magnetic field of the bar magnet.

The field produced by \mathbf{K}_{b} has the same form as a densely wound solenoid, because both systems (magnet and solenoid) have an azimuthal surface current.

Schematic illustration of $\mathbf{B}(\mathbf{x})$ produced by a cylindrical surface current \mathbf{K}_{b}.

It is possible to calculate $\mathbf{B}(\mathbf{x})$ for points on the symmetry axis of a circular cylinder with $\mathbf{K}_{\mathrm{b}}=M_{0} \widehat{\boldsymbol{\phi}}$. In Exercise 8-13 the field is found to be

$$
\begin{equation*}
\mathbf{B}(0,0, z)=\frac{\mu_{0} M_{0}}{2}\left\{\frac{z+\ell / 2}{\sqrt{a^{2}+(z+\ell / 2)^{2}}}-\frac{z-\ell / 2}{\sqrt{a^{2}+(z-\ell / 2)^{2}}}\right\} \widehat{\mathbf{k}} \tag{2}
\end{equation*}
$$

where $\ell=$ length and $a=$ radius. For example, the figure following shows a graph of $B_{z}(0,0, z)$ versus z for a bar magnet with length $=$ $4 \times$ diameter, i.e., $\ell=8 a$.

Examples

- For $z \gg \ell$, i.e., far from the magnet, the field is

$$
\begin{equation*}
B_{z}(0,0, z) \sim \frac{\mu_{0} m}{2 \pi z^{3}} \quad \text { where } \quad m=M_{0} \pi a^{2} \ell \tag{3}
\end{equation*}
$$

(The asymptotic expansion from (2) is nontrivial!) This is the field of a magnetic dipole with dipole moment $\mathbf{m}=\mathbf{M} \Omega$ where $\Omega=\pi a^{2} \ell$ is the volume of the magnet. A graph of B_{z} from (2) on a \log scale will reveal that $B_{z} \propto z^{-3}$ asymptotically.

- If $\ell \gg a$, then the field at the center of the bar magnet is

$$
\begin{equation*}
\mathbf{B}(0,0,0)=\mu_{0} M_{0} \widehat{\mathbf{k}} \tag{4}
\end{equation*}
$$

and the field at the end is

$$
\begin{equation*}
\mathbf{B}(0,0, \ell / 2)=\frac{1}{2} \mu_{0} M_{0} \widehat{\mathbf{k}} \tag{5}
\end{equation*}
$$

For magnetized iron, $\mu_{0} M_{0}$ is of order 1 T .

