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11. The Trigonometric Functions

11.1 REVIEW OF THE TRIGONOMETRIC FUNCTIONS

Angular variables are often denoted by Greek letters, such as 6 or, d. We

:radi
will use 0. The angle should be measured in radians. See Figure SAm i ae

is the arclength of a section of a circle with radius r, then the angle of the
section, in radians, is § = s/r. For example, the angle of a semicircular arc
is @ = 7r/r = 7 radians, because the arclength of the half circle is 7r. This
angle is 180 degrees, so to convert between radians and degrees we use the
equivalence

m radians = 180 degrees.

For example, a right angle is 90 degrees or 7/2 radians.
The well-known trigonometric functions are sin 6, cosf, and tan 6. These
R K . . ] fig:rightT
are defined from the lengths in a right triangle in Figure 7 7 Two important
identities of the trig functions can be derived from the right-triangle formulae.
First, note that

sind  O/H O sin @

= = — =tanf = tané. 11-1
cos A/H A an - cosg 0 (11-1)
Second, by the Pythagorean theorem,
0? +A%2 H?
sin? 0 4 cos? § = % =2 = 1
— sin?6 +cos? 0 = 1. (11-2)

Less familiar trig functions are csc 6, sec 6, and cot 6, which are the reciprocals

1 1
csch = ] secd = —— |, cotf = (11-3)

ing "’ cosf ’ tan @’

We'll analyze trig functions with 6 as the independent variable. What are
the domain and range? The trigonometric relations in Fig. h?gﬁeg"l%%ited
to 0 < 6 < 7/2, because the angles in a right triangle must be less than
%9 (:iaeﬁra%esl.esBut we extend the definitions to angles greater than n/2 in Fig.
77. Note that the sign of each trig function is negative for some range of 6.

fig:gt2pi
Figure |7‘?g_s%ﬁvpv_s the signs of the trig functions for angles greater than /2.
Because 6 is an angle (in radians) it could be restricted to [0, 27]. However,
it is more useful to allow 6 to take all real values, so that the domain is

1
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—00 < 0 < co. Because the angle 6 + 27 corresponds to the same point P in
the plane as 0, all the trig functions are periodic functions; in particular,

sin(f 4+ 2w) = siné, (11-4)
cos(f+2r) = cosb. (11-5)

In graphical terms, a graph of sinf or cosf oscillates between +1 and —1.
The curve repeats—taking exactly the same shape—over intervals of length
27. For example, cosf goes from 1 to —1 and back to 1 as 6 varies from 0
to 27; then it repeats with the same shape as 6 varies from 27 to 4m; and it
repeats identically for any interval from 27n to 27rf(1n ;gi}l)co\g/ith n an integer.
The graphs of sinf and cosf are shown in Fig. [77. om the graphs we
see that the range of either sin 6 or cosf is [—1,1]. Also, these functions are
continuous.

T?ie f}clglnction tan @ has separate branches. A graph of tan (ies :sihown in
Fig. 77, he range of tanf is (—oo,+00). By the identity (IT-1), tané
approaches oo as giapgrggghes any value with cosf = 0. The right-triangle
formulae (see Fig. hﬁ?ﬁgﬁtha‘c cos(m/2) = 0, because the adjacent length
A tends to 0 as 6 approaches 7/2 (with H fixed). By periodicity, cos§ is also
0 for # = /2 + nx for any integer n. Therefore the tangent is discontinuous,
and undefined, at § = 7/2 4+ nm. The period of the tangent function is 7,

tan(f + 7) = tan6. (11-6)

Additional properties of the trigonometric functions are explored in the
exercises.

1Please reproduce these graphs with a graphing calculator.
2Please reproduce the graph with a graphing calculator.
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11.2 DERIVATIVES OF THE TRIG FUNCTIONS

The derivative of sin € is, by definition,

4 sinf = }irr(l) sin(0 +9) - sm@l (11-7)

db 1)
To evaluate the limit, simplify the right-hand side by applying the identity

sin(A + B) = sin A cos B + cos A sin B; (11-8)
letting A =0 and B = ¢ gives
sin(f + &) = sinf cos § + cos fsin 4. (11-9)

Now take the limit § — 0. The factor cosd may be approximated by 1, and
sin 6 may be approximated by J. (These %rqgiz%ldg})proximations are explained

below.) Making these approximations, (T1-7) becomes
sin @ . sinf + cos@ -6 — sin
—sinf = lim
do 6—0 )
= }iH(l) cos = cosf. (11-10)

The result is

d

— sinf = cosé. (11-11)

do

Before proceeding, let’s make sure we understand the approximations
cosd ~ 1 and sind =~ 9, (11-12)

which are valid for small 4, i.e., § < 1. Figure E}f:ssl;ﬁa graph of cosf and
iftiis:s({tg\c/(i)gus from the graph that cos0 = 1, and cosd ~ 1 for small §. Figure
77 also shows sinf. It is obvious from the graph that sin0 = 0, and sin is
approximately linear in § for srr%:%llz gin})geg%{ct7 the slope of sinf is 1 at 6 =1,
S0 sind & ¢ for small §. Figure b‘%mgraph of sinf/6, and it is obvious
that sinf/0 — 1 as § — 0; that is, sind ~ ¢ for small 6. But these analyses
are merely numerical. A rigorous mathematical proof that sind approaches
0 as 6 — 0 is given in Appendix X.

We have been denoting the independent variable by 6, because 6 is a com-
mon notation for an angular variable in applications. But since the domain of
the trig functions is (—oo, +00) we :%(éurll(éhjust as well use the generic symbol
z. Then the derivative formula (ITT- ecomes

d

@sin:c = cosz. (11-13)

eq:defder
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fle)  df/dz || f(z) df /du
sinx cosz || cscx —cotxcscx
cosx —sinx || secx tan x sec x
tanx sec’x || cotz —csc? x

Table 11.1: Derivatives of the trigonometric functions

Next, what is the derivative of cosf? We could go back to the basic
definition,? but it is easier to use the fact that cos 6 is simply related to sin 6,
by

cosf = sin (g —9). (11-14)

fig:rightT
For example, in the right triangle in Fig. ?1?, the side adjacent to @ is the side
opposite to the complementary angle ¢ = 7/2 — 6; so

A ) A
COS@—E and smw—ﬁ,

: 1
which implies (el 1Y Similarly, sin 6 = cos zr“/o 2 —169).] Now, to differentiate

cos 0, apply the chain rule to the identity (

d d . /m
@CObG = @Sln (5—9)
= % (sinu) x d_z where u= g -0
= cosu X (—1) = —cos(7/2 — ) = —sinb. (11-15)

Hence the derivative of the cosine function is

o CoST = —sinz. (11-16)

tbl:dt
Table h_fl_records the derivatives of the trigonometric functions, starting
with the sine and cosine functions. The derivatives of the other functions
can be derived by first expressing the function in terms of sine and cosine,
and then applying general methods of differentiation, as in the next two
examples.

fexer-dcos
3See Exercise [77.
4The derivatives of trigonometric functions are also listed in the Table of Derivatives
in Appendix E.
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Example 1. Determine the derivative of tanz.

eq:idl
L)

Solution. Recall the identity (II ]

__sinz  N(x)
tanz = sz~ Do)’ (11-17)

Calculate the derivative by using the rule for differentiating a quotient,

. N'D—D'N  cos®z +sin’z
—tanx = =
dx D2 cos? x
1 2
= = . 11-18
- sec” x ( )

Example 2. Determine the derivative of sec z.

Solution. Recall that secx =1/ cosz. Therefore

d 1 -1 d
—Secr = —_— = —————COSZI
dx dr cosxz  cos?xdx
= Sl# = tanx secz. (11-19)
cos? x

Rather than try to memorize all the trig derivatives, it is sufficient to
leg:dsin eqg:dcaos K . A
know (II1-13) and (I1-16). Then the other derivatives can be determined

when needed in the manner of Examples 1 and 2.

An interesting application of the derivatives of sinf and cos occurs in
the use of plane polar coordinates to describe motion in 2 dimensions. See
Appendix P.
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11.3 TAYLOR SERIES FOR TRIGONOMETRIC FUNCTIONS

The functions cosx and sinx may be written as power series in x. These
expansions reveal a beautiful relation between trig functions and the ex-
ponential function e®. We shall see that the exponential of an imaginary
variable if (where i = \/—1) is a combination of cos® and sin 6. This is not
merely a wonderful but abstract relationship; it leads to important practical
methods of analysis, such as the Laplace transform.

Exzample 3. Derive the Taylor series expansion for cosz, around z = 0. (In
other words, the result will be the Maclaurin series for cosz.)

Solution. Let f(x) = cosx. The Taylor series expansion [recall Eq. (7-xx)
or (7-yy)] around = = 0 is

f@) = FO)+ PO+ 5 0)
1

—~ F™ )z + - (11-20)

1
+5f<3>(0)x3 ot

where f(")(x) denotes the nth derivative of f(x). The first few derivatives
are shown in the table®

@) f(0)

n
0 cosx 1
1 —sinx 0
2 —cosz -1
3 sinz 0
4 Ccos T 1

A simple pattern emerges, which repeats after every 4 steps. Note that the
fourth derivative f(*)(z) is the same as f(z), namely cos x, which is where we
started. So the next four derivatives are again {—sinx, — cosx, sinz, cosz}
and the pattern starts over again at n = 8. Thus

cosx if n=4v (divisible by 4)
iy ) — sinz if n=4r+1 i
1) —cosz if n=4v+2 (11-21)

sine if n=4v+3

5Please verify the table, from the relations sin’ = cos and cos’ = — sin.
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where v is any integer. The derivatives evaluated at x = 0 are

+1 if n=4v
f™O)=4{ -1 if n=4+2 (11-22)
0 if nis odd.

eq:Ta
Inserting these results into (ﬁTQ'OY), the Taylor series is

< — 1 2 1 4 1 6
cosr = l—ﬂx +Ix—ax 4.
o~ (=D*
= 2 (11-23)

The Taylor series of sinz can be derived by a similar calculation® and the
result is

1 1
sinz = z—§x3+ax5—ﬁx7+_...
- (_1)k 2k+1
= D e (11-24)
|
k:O(2k+1).

. . leq:TScos leq:TSsin
The series in (I1-23) and (I1-24) converge for any value of x.

* * *

The Taylor series for the other trigonometric functions are more compli-
cated. Consider the tangent function, g(r) = tanz. The first three nonzero
terms in the Taylor series are

1 3 2 5
t p— — DR 11_25
anr =z + 3.’[] + 15(E + N ( )

and the full series is complicated and has no particular interest. However, it
will turn out that the inverse function, arctan x, has a simple and interesting
Taylor series.

11.3.1 Cosine, sine, and exponential

The cosine and sine functions originate in trigonometry—the analysis of plane
triangles. This branch of mathematics is necessary for practical applications
such as surveying, civil engineering, and statics and dynamics of mechanical
systems. Through calculus we discover something else about the cosine and
sine functions: They are related to the exponential function with a complex
variable.”

SExercise 7.~

"The complex numbers are numbers that have both real and imaginary components,
x + iy where i = /—1.
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In general any complex number z may be written as
z=x+1y
where x and y are real,
z =Rez and y=1Imz.

The exponential function e? is defined for a complex variable z through the
power series,

2 23 o

z e Z DY —_— DY
¢ = 14zt gttt
OOZn
= ZH' (11-26)
n=0

eg :pSeX
If 2z is real, z = x, then (II i—%éi 1s the Taylor series expansion for e*, which
was derived in Chap. 10.
. . . . . © : SEX .
If z is imaginary, z = iy with real y, then (II 5% separates into the
trigonometric series of cosine and sine. Writing the first few terms of the

eq:psS
series in (II 1567, , with z = iy,

2 -3 4 -5 6
iy _ YWY Wy
TR TR My
2 4 3 5
_ vy .y o,y }
Lty L L . (11-27)

All terms with an even power of y are real, and those with an odd power of y
are imaginary. The signs of the various terms are determined by the powers
of 1,

=1, it=i, ?=-1, 3=—i, i*=1, ete (11-28)

Any integer power of ¢ must be one of the set {1, ¢, —1, —i }. If n is divisible
by 4 then ¢ = 1; considering all integer powers,

+1 if n=4v(divisible by 4)
) i i n=4v4+1
R R A (11-29)

-3 if n=4vr+3

‘eq:deriveEuler

de iveEuler
where v is any integer. Now examine the rseal and imaginary parts of ( .
eq:

TS |
These are just the series (IT1- ZJQ)Oszd (Ilci 14)7 respectively, for cosy and siny.

Hence

e = cosy + isiny. (11-30)
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This identity is called Euler’s relation. It shows that the exponential and
trigonometric £upEcutigPS are intimately related, through complex numbers.
Equation (IT1-30) expresses the exponential in terms of cosine and sine,

e = cos @ +isinf. (11-31)

Conversely, we may express cosines and sines in terms of exponential func-
tions. First note that

cos(—0) = cos b and sin(—0) = —sin#. (11-32)
Then by (e%iEu%ertheta
e " = cosf —isiné. (11-33)

leq:Eulerthetgdeq:Eulernegth
[

Adding (T1-3T) and (11-33) the zsin f terms cancel and we obtain the cosine,
0 4 —if
cosf = % (11-34)

. leg:Eulernegth leqg:Eulertheta .

Subtracting (I[T-33) from ([[I-31) we obtain the sine,

eié) _ e—ie

sinf = ———. 11-35
5 (11-35)
:cosexp :sinexp

e leq
In deriving (Iﬁ—dél) and (IT1-35) we have explicitly assumed that 6 is real,
so that i6 is purely imaginary. But in fact all the calculations would be
equally valid for complex numbers, and we may write in general

eiz + e—iz eiz _ e—iz
= - d inzg=——— 11-36
cos z 5 an sin z 57 ( )

. eq:cosz .
for any complex number z. Equations (II 135 may be taken as the definitions
of trig functiogs'f%rxcomplex z, with the complex exponential defined by the
power series (T1-

eq:Eulertheta

eq:Eulernegth

eq:cosexp

eq:sinexp

€q:cosz
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11.4 THE INVERSE TRIGONOMETRIC FUNCTIONS

Inverse functions were introduced in Chapter 1. For example, consider the

inverse of the sine function, denoted sin™*:

x = sinf = 6 =sin~'z. (11-37)

Another notation for the inverse of sine is arcsin (read as “arc sine”),

arcsinz = sin~' . (11-38)
The name, arcsinx, is quite descriptive. Arcsinz is the angle whose sine is
x, because

0 = arcsinx = x =sinb. (11-39)

To define an inverse function, the function must be one-to-one.® The function
sin  is one-to-one for 0 in [—7/2,7/2]; as 0 varies from —7/2 to 7/2, sinf
varies from —1 to +1. Therefore the domain of arcsinz is « € [—1,1], and
. . H S1. .

the range is [—7/2, 7/2]. Figure 7 7 shows a graph of arcsin .

To determine the derivative of arcsin x we need the relation of differentials.
Let 8 = arcsinz; then z = sinf. From Sec. 11.2 we know the derivative
dx/df = cos 8; so the relation of differentials is

dx = cos 6 db. (11-40)

In other words, if Az is a small change of x and A# is the corresponding
change of 6 then

Ax =~ cos A6. (11-41)

The approximation here is that we neglect terms with a higher order of
smallness than Az or A#; the higher-order terms are negligible in the limit
Ax — 0. But now we should express the ratio ofecl:lia%ges as a function of x.
For 0 in [—7/2,7/2] the trigonometric identity (I1-2) determines cos#@,

cosf = V1 —sin20 = /1— 22 (11-42)
:dsini : id
Combining the results (el 41 and (e = 1, we find the derivative of arcsinz,
Af
im —
Az—0 Ax

1

- L (143

— arcsinz =
T

8See Sec. 1.4.
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fig:arcsin
Note that the derivative is consistent with the slope of the curve in Fig. [77.

The slope is positive for all x in (—1,1), is equal to 1 for = 0, and tends to
oo as x approaches +1. The function 1/+4/1 — 22 has the same behavior.
The function arccosz is similar to arcsinz, but has a different range.
Cos @ is a one-to-one function for 6 from 0 to 7 (see Fig. 7. Thorefore
arccosz has domain [—1, 1] and range [0, 7]. The relation of differentials for

x = cosf is

dx = —sinf df. (11-44)
So the derivative of 8 = arccosz is
d_9 -1 -1
dz  sinf  1—cos2h’
d -1
% arccosx = ﬁ (11—45)

The slope of arccosz is negative.’
Ezxzample 4. Differentiate g(§) = arctan(.

Solution. The fur%(i:ti.chnf = tan g is one-to-one for —7/2 < g < m/2; this is
evident from Fig. 77. The corresponding range is —oo < & < co. Therefore
the domain of arctan( is gi—?gfé)tognand the range is (—m/2,7/2). A graph of
arctan ¢ is shown in Fig. [7 #“The relation of differentials is

dt
dé = ( ang) dg = sec? g dg, (11-46)
dg
so the derivative of arctan¢ is
dg 1 2
_— = = S . 11—47
dé  sec?g s g ( )

But we must re-express the result as a efu'nictlion ofe . iGziven that £ = tang,
what is cos g? Recalling the identities (TI-T) and (ITT-2),

sin g _ /1 —cos?g (11-48)

cos g cos g

&=

This may be solved for cos g in terms of &; after a bit of algebra the result is

cos? g = (11-49)

E+1

) —jexer-dacos
Exercise [77.

eq:darccos
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f(z) f(@) f(x) f(z)
. 1 -1
arcsinx _— arccos x
V1—22 V1—22
1 -1
arctanx xz——i—l arccot x 172——|—1
-1 1
arcesCT /72 — 1 arcsecT /72 — |

Table 11.2: Derivatives of the inverse trigonometric functions.

Hence the derivative of arctan¢ is

d tané 1
— arctané = ——.
d¢ &2+41
:d t
Note that the derivative in (el 50 caagﬂrees with the slope of arctan¢ in Fig.

fig:arctan A . 10
7. e le%Bedls maximum at £ = 0 and approaches 0 as £ — +oo.

inv
Table TT.2 Tists the derivatives of all the inverse trigonometric functions.

(11-50)

11.4.1 The Taylor series for arctanz

Something interesting occurs in differentiating the inverse trig functions.
Consider, for example, F(x) = arctanz. We start with a transcendental
function. But F’(z) is merely algebraic,

1
F(z) = arct d Fl(z) = ——. 11-51
(x) = arctanx an (x) P ( )
Now all the higher derivatives will also be algebraic,
—2x 622 — 2x
FO>)= ——"—  FO@) = —"" te. 11-52
(z) (2 4+1)2° (z) (22 4+1)3 e ( )

A very beautiful result that we may now derive is the Maclaurin series
for arctanz, i.e., the Taylor series around = = 0. We'll start with F'(z), for
which the Maclaurin series can be written by inspection,

Fliz)=1—a2? 42" =25 + 2% — ... (11-53)

Le., simply the geometric series for 1 /(z? +1). Now, what is the function
F(z) whose derivative is (T1-53)7 Each term on the right side of (T1-53) 15 a

0 —fexer-datan
Exercise [77.
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power +xP; and the function with derivative +a? is £27*1/(p+1). Therefore,

1 1 1 1
F(m):x—§x3+5x5—?x7+§x9—+--- . (11-54)

Thus arctanz has a simple Taylor series. A striking example of the series
occurs for = 1. note that F(1) = arctan1 = w/4, and hence

1 1 1 1

g = l—g—l—g—?—l—g——}w” . (11-55) |eq:Leibnizseries
In words, the alternating series of reciprocal odd integers is equal to /4.
This amazing result was published by Leibniz in 1674, and known earlier to
James Gregory. It shows that the transcendental number 7 is in fact a very

simple number: it can be expressed using each odd integer exactly once.
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11.5 THE HARMONIC OSCILLATOR

A general physics problem, with extensive applications in both science and
engineering, is to describe vilfni*azzfz}'l%ns. The simplest example is the harmonic
oscillator, illustrated in Fig. 777 We shall see that sinusoidal functions (cos 6
or sinf) describe the motion.

Imagine a mass m that moves along the x axis, always attracted to the
origin by a force proportional to the distance from the origin,

F = —ka. (11-56)

The positive constant % is called Hooke’s constant.!! If x is positive then F is
negative (i.e., the force is to the left, toward the origin); if x is negative then
F' is positive (i.e., the force is to the right, also toward the origin). Such a
force is called a restoring force because it always acts in the direction toward
the equilibrium position, = 0. The fact that the restoring force for an
elastic spring is proportional to the displacement from equilibrium is called
Hooke’s law. The linear relation, force o — displacement, is characteristic of
all kinds of small vibrations.

The equation of motion for the position x(¢) of m as a function of time ¢
is

d2
mﬁf = —kx(t); (Newton’s second law) (11-57)
or,
d*x 9 k
P x(t) where w=4/ (11-58)

eq:dyn2

The general solution of (%requires a function whose second derivative
is the opposite of itself. Now think about cosf.'? Its derivative is —sin#),
and the derivative of that is —cosf. So the second derivative of cos6 is
—cosf. This functional property is just what we are looking for! We can
also multiply by a constant A. Also, the variable 6 should be linear in ¢ and
dimensionless, which suggests § = wt — §. So, we are led to try the general
solution

x(t) = Acos(wt — 9). (11-59)

'Robert Hooke (1635 — 1703) was a contemporary of Isaac Newton. The two men had
a rather unfriendly relationship due to controversies over their relative merit in science.

12We could alternatively use sinf to describe the oscillating position. The functions
cos f and sin @ are really equivalent for this purpose, because they differ only by a phase
shift.
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:dyn2
Indeed this function does obey the differential equation (el i—Séni:

(cll_ng = —wAsin(wt — 9)
2
CCZITZ = —w?Acos(wt — ) = —w?x.

There are two constant parameters, A and §, in the general solution. These
will be determined if some initial conditions of the system are specified.

. |fig:ho o
Example 5. Suppose the mass m in Fig. 77 1s pulled to the position z =
3cm, held at rest at that point, and then released at time ¢ = 0. Determine
z as a function of ¢.

Solution. Two initial conditions are given. The position at ¢t = 0 is 2(0) =
3cm. The velocity at ¢ = 0 is 0 (i.e., m is released fgoplerfggg} so z/(0) =
0. Applying these conditions to the general solution (IT1- we obtain two
equations for the two unknown parameters, A and ¢,

z(0) = Acosd=3cm (11-60)
2/ (0) = wAsind=0. (11-61)

The second equation is satisfied by § = 0. Then the first equation implies
A = 3cm. The result is

x(t) = (3cm) coswt. (11-62)

fig:hograph
Figure 7 # shows a graph of x versus wt. Note that the slope of = versus ¢,

which is the wvelocity, is 0 at ¢ = 0, as required. The mass m oscillates back
and forth between +3 cm and —3 cm with a period of T = 27 /w. For example,
at time ¢ = T the mass is again at the initial point and instantaneously at
rest.

fig:ho
Example 6. If the period of the harmonic oscillator in Fig. I7 715 0.5 s, and
the oscillating mass is 150 g, what is Hooke’s constant for the spring, in N/m?

Solution. The period of oscillation is

2
T="205s, (11-63)
w

:dyn2
and note that w = 27/T. But w is defined in (el 58 , which implies k& = mw?.
Thus Hooke’s constant is

P 4mm B 47? x 150 x 103 kg
T (0.55)2

= 24N/m. (11-64)
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(The newton N is 1kgm/s?.)

Ezample 7. Let w be 12571, Suppose the mass m is initially (at ¢ = 0)
at position £ = 3cm, and is given an initial velocity (toward larger x) of
24 cm/s. At what time will m first pass the equilibrium point? What is the
instantaneous velocity at that time?

.S;ol.uetigg.l We will need the parameters A and § in the general solution
-59). The initial conditions in this case are

z(0) = Acosd=3cm,
2 (0) = wAsind=24cm/s = Asind = 2 cm. (11-65)

We may solve for A by adding the squares,

A% = (Acosd)? + (Asind)? = 13cm?
A = 3.6lcmy (11-66)
: £
and then solve the second equation in (el i—eﬁﬁ ofgraﬁr?
2
0= in{ —— ) = 0.587. 11-67
arcsin (3.61) ( )

The position as a function of time is A cos(wt — 8). The time ¢ty when m
passes the origin (z = 0) is given by

T 1 /7
who—6=5 = w(2+5) 0.18 (11-68)
The velocity at that time is
2 (tg) = —wAsin(wtg — §) = —wA = —43.3cm/s. (11-69)

The negative velocity indicates that m is moving toward smaller z, i.e., in
the negative x direction, as m passes the origin at time tg.

11.5.1 Kinetic and Potential Energy

The kinetic energy of a mass m moving with velocity v is K = %va. The
potential energy of a spring k extended or compressed b il‘?lﬁgth ris U =
%ka. The total energy of the harmonic oscillator in Fig. g 7'1s a constant of
the motion.

eq:egsforpars

: 1
The energies of the harmonic oscillator, for the general solution (el 59 Gjra

are

1 dz\? 1 249 . 9
K(it) = gl ) =gmw A sin” (wt — §), (11-70)
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1 1
Uuit) = §km2 = 5]@42 cos? (wt — ). (11-71)
Then the total energy is
E=K(t)+U(t) = 3kA* (11-72)

where mw? has beee}% Beplaced by k in accord with (%T%%% and the trigono-
metric identity (T1-2) has been used. The energy is a constant of the mo-
tion.'3

Conservation of energy is one of the great unifying principles in science.
Its simplest expression is in mechanics, where kinetic energy plus potential
energy is constant. The harmonic oscillator is a basic example of this princi-

ple.
*

fig:ho

The system in Fig. hfﬁﬁvery simple. We have ignored friction or other
damping forces, so the oscillations would continue forever with constant am-
plitude. Although this is an idealized example, it is important because all
vibrating systems with small amplitudes resemble the harmonic oscillator
mathematically, over times small enough that damping is negligible. In par-
ticular, the sinusoidal functional form of the oscillating variable is common.

Why does the behavior of wibrations depend on a trig function, cosé or
sin 67 After all, the physical problem has nothing to do with right triangles—
the trigonometric origin of the sine and cosine. But nature is simple, reusing
the same functions for different applications. It is because of calculus that
harmonic oscillations are sinusoidal. The dynamical equations of a harmonic
oscillator are

dz dv 9

i and Pl (11-73)
These are dual relations between the position z(¢) and velocity v(t). Note
the resemblance to the derivatives of f(0) = sinf and g(f) = cos¥,

df dg

do do
Only the sine and cosine functions have these dual relations of derivatives,
so these functions are key to the mathematics of vibrations.

g and —f. (11-74)

13 - fexXer .ufgm:nﬂ:orrst?—
Exercises 77 and I77.
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11.5.2 Harmonic waves

Harmonic oscillations, and the sinusoidal functions, also occur in waves. But
the function for a wave depends on multiple variables—spatial coordinates
and time.

In general, what is a wave?

A wave is a geometrical structure that is extended in space, and that
oscillates in both space and time. Many physical phenomena involve waves:
sound, light, motion of a violin string, water height in the ocean, etc. In
any harmonic wave, some quantity varies sinusoidally, both as a function of
position for fixed time and as a function of time for fixed position. Examples
of oscillating quantities in various wave phenomena are listed in the table:

phenomenon oscillating quantities

sound pressure and density
light electric and magnetic fields
violin music  transverse displacements
of the string and box
ocean wave vertical displacement
of the water surface

fig:wave

Figure |7‘?g‘ﬂ'lu_strates a general wave motion. The wave moves in the x
direction, and Q(x,t) is the quantity that varies in the wave. Figure E?%’gé_%s
a snapshot of the wave—a graph of @) versus x at an instant of time. Now
imagine what happens as the wave moves to the right. The shape remains
sinusoidal, but the positions of crests, troughs, and nodes travel along the x
axis. An observer at a fixed point will find @ varying in time as the wave
moves past the observer’s position. For example, suppose Jack is at the
origin and Jilliis:%lveéhalf wavelength to the right. Both observe ) = 0 at the
time in Fig. 777 But as the wave moves (to the right) @ decreases for Jack
(becoming negative) and increases for Jill (becoming positive) until the wave
has moved one-quarter wavelength. At that time, the trough (minimum Q) is
by Jack while the crest (maximum Q) is by Jill. As time passes, @ oscillates
for both Jack and Jill.

The function Q(z,t) that describes a harmonic wave moving in one di-
mension (z) is

Q(z,t) = Acos (kx — wt — ). (11-75)

There are four parameters. A is the amplitude, i.e., the maximum size of
Q; Q oscillates between —A and +A. § is the phase shift, which determines
the positions and times for wave crests, troughs, and nodes. k and w are
related to the wavelength and frequency. Cos# is a periodic function of 6,

eq:wavefun



Daniel Stump 19

with perion 2,
cos(f + 2m) = cosf.

Therefore Q(z,t) has the same value at « and = + A (at the same time t)
where kX = 27; the wavelength is A = 27 /k. Similarly, Q(z,t) has the same
value at ¢ and ¢ + 7 (at the same location x) where wr = 27; the period of
oscillation is 7 = 27 /w and the frequency is f = 1/7 = w/27.

Throughout science and engineering, waves are described by sinusoidal
functions, sin 6 or cos®f.
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