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11. The Trigonometric Functions

11.1 REVIEW OF THE TRIGONOMETRIC FUNCTIONS

Angular variables are often denoted by Greek letters, such as θ or φ. We

will use θ. The angle should be measured in radians. See Figure
fig:radians
??. If s

is the arclength of a section of a circle with radius r, then the angle of the

section, in radians, is θ = s/r. For example, the angle of a semicircular arc

is θ = πr/r = π radians, because the arclength of the half circle is πr. This

angle is 180 degrees, so to convert between radians and degrees we use the

equivalence

π radians = 180 degrees.

For example, a right angle is 90 degrees or π/2 radians.

The well-known trigonometric functions are sin θ, cos θ, and tan θ. These

are defined from the lengths in a right triangle in Figure
fig:rightT
??. Two important

identities of the trig functions can be derived from the right-triangle formulae.

First, note that

sin θ

cos θ
=
O/H

A/H
=
O

A
= tan θ =⇒ sin θ

cos θ
= tan θ. (11-1) eq:id1

Second, by the Pythagorean theorem,

sin2 θ + cos2 θ =
O2 +A2

H2
=
H2

H2
= 1

=⇒ sin2 θ + cos2 θ = 1. (11-2) eq:id2

Less familiar trig functions are csc θ, sec θ, and cot θ, which are the reciprocals

csc θ =
1

sin θ
, sec θ =

1

cos θ
, cot θ =

1

tan θ
. (11-3)

We’ll analyze trig functions with θ as the independent variable. What are

the domain and range? The trigonometric relations in Fig.
fig:rightT
?? are limited

to 0 < θ < π/2, because the angles in a right triangle must be less than

90 degrees. But we extend the definitions to angles greater than π/2 in Fig.
fig:allangles
??. Note that the sign of each trig function is negative for some range of θ.

Figure
fig:gt2pi
?? shows the signs of the trig functions for angles greater than π/2.

Because θ is an angle (in radians) it could be restricted to [0, 2π]. However,

it is more useful to allow θ to take all real values, so that the domain is

1
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−∞ < θ <∞. Because the angle θ+ 2π corresponds to the same point P in

the plane as θ, all the trig functions are periodic functions; in particular,

sin(θ + 2π) = sin θ, (11-4)

cos(θ + 2π) = cos θ. (11-5)

In graphical terms, a graph of sin θ or cos θ oscillates between +1 and −1.

The curve repeats—taking exactly the same shape—over intervals of length

2π. For example, cos θ goes from 1 to −1 and back to 1 as θ varies from 0

to 2π; then it repeats with the same shape as θ varies from 2π to 4π; and it

repeats identically for any interval from 2πn to 2π(n+ 1) with n an integer.

The graphs of sin θ and cos θ are shown in Fig.
fig:sincos
??.1 From the graphs we

see that the range of either sin θ or cos θ is [−1, 1]. Also, these functions are

continuous.

The function tan θ has separate branches. A graph of tan θ is shown in

Fig.
fig:tan
??.2 The range of tan θ is (−∞,+∞). By the identity (

eq:id1
11-1), tan θ

approaches ±∞ as θ approaches any value with cos θ = 0. The right-triangle

formulae (see Fig.
fig:rightT
??) show that cos(π/2) = 0, because the adjacent length

A tends to 0 as θ approaches π/2 (with H fixed). By periodicity, cos θ is also

0 for θ = π/2+nπ for any integer n. Therefore the tangent is discontinuous,

and undefined, at θ = π/2 + nπ. The period of the tangent function is π,

tan(θ + π) = tan θ. (11-6)

Additional properties of the trigonometric functions are explored in the

exercises.

1Please reproduce these graphs with a graphing calculator.
2Please reproduce the graph with a graphing calculator.
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11.2 DERIVATIVES OF THE TRIG FUNCTIONS

The derivative of sin θ is, by definition,

d

dθ
sin θ = lim

δ→0

sin(θ + δ)− sin θ

δ
. (11-7) eq:defder

To evaluate the limit, simplify the right-hand side by applying the identity

sin(A+ B) = sinA cosB + cosA sinB; (11-8)

letting A = θ and B = δ gives

sin(θ + δ) = sin θ cos δ + cos θ sin δ. (11-9)

Now take the limit δ → 0. The factor cos δ may be approximated by 1, and

sin δ may be approximated by δ. (These crucial approximations are explained

below.) Making these approximations, (
eq:defder
11-7) becomes

d

dθ
sin θ = lim

δ→0

sin θ + cos θ · δ − sin θ

δ
= lim

δ→0
cos θ = cos θ. (11-10)

The result is

d

dθ
sin θ = cos θ. (11-11) eq:dsinth

Before proceeding, let’s make sure we understand the approximations

cos δ ≈ 1 and sin δ ≈ δ, (11-12)

which are valid for small δ, i.e., δ � 1. Figure
fig:sincos
?? shows a graph of cos θ and

it is obvious from the graph that cos 0 = 1, and cos δ ≈ 1 for small δ. Figure
fig:sincos
?? also shows sin θ. It is obvious from the graph that sin 0 = 0, and sin δ is

approximately linear in δ for small δ. In fact, the slope of sin θ is 1 at θ = 1,

so sin δ ≈ δ for small δ. Figure
fig:sinoverx
?? shows a graph of sin θ/θ, and it is obvious

that sin θ/θ → 1 as θ → 0; that is, sin δ ≈ δ for small δ. But these analyses

are merely numerical. A rigorous mathematical proof that sin δ approaches

δ as δ → 0 is given in Appendix X.

We have been denoting the independent variable by θ, because θ is a com-

mon notation for an angular variable in applications. But since the domain of

the trig functions is (−∞,+∞) we could just as well use the generic symbol

x. Then the derivative formula (
eq:dsinth
11-11) becomes

d

dx
sinx = cosx. (11-13) eq:dsin
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f(x) df/dx f(x) df/dx

sinx cosx cscx − cotx cscx

cosx − sinx secx tanx secx

tanx sec2 x cotx − csc2 x

Table 11.1: Derivatives of the trigonometric functions tbl:dt

Next, what is the derivative of cos θ? We could go back to the basic

definition,3 but it is easier to use the fact that cos θ is simply related to sin θ,

by

cos θ = sin
(π

2
− θ

)

. (11-14) eq:comple

For example, in the right triangle in Fig.
fig:rightT
??, the side adjacent to θ is the side

opposite to the complementary angle ψ ≡ π/2− θ; so

cos θ =
A

H
and sinψ =

A

H
,

which implies (
eq:comple
11-14). [Similarly, sin θ = cos(π/2− θ).] Now, to differentiate

cos θ, apply the chain rule to the identity (
eq:comple
11-14),

d

dθ
cos θ =

d

dθ
sin

(π

2
− θ

)

=
d

du
(sinu)× du

dθ
where u =

π

2
− θ

= cosu× (−1) = − cos(π/2− θ) = − sin θ. (11-15)

Hence the derivative of the cosine function is

d

dx
cosx = − sinx. (11-16) eq:dcos

Table
tbl:dt
11.1 records the derivatives of the trigonometric functions, starting

with the sine and cosine functions.4 The derivatives of the other functions

can be derived by first expressing the function in terms of sine and cosine,

and then applying general methods of differentiation, as in the next two

examples.

3See Exercise
exer:dcos
??.

4The derivatives of trigonometric functions are also listed in the Table of Derivatives

in Appendix E.
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Example 1. Determine the derivative of tanx.

Solution. Recall the identity (
eq:id1
11-1),

tanx =
sinx

cosx
=
N(x)

D(x)
. (11-17)

Calculate the derivative by using the rule for differentiating a quotient,

d

dx
tanx =

N ′D −D′N
D2

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x. (11-18)

Example 2. Determine the derivative of secx.

Solution. Recall that secx = 1/ cosx. Therefore

d

dx
secx =

d

dx

1

cosx
=

−1

cos2 x

d

dx
cosx

=
sinx

cos2 x
= tanx secx. (11-19)

Rather than try to memorize all the trig derivatives, it is sufficient to

know (
eq:dsin
11-13) and (

eq:dcos
11-16). Then the other derivatives can be determined

when needed in the manner of Examples 1 and 2.

An interesting application of the derivatives of sin θ and cos θ occurs in

the use of plane polar coordinates to describe motion in 2 dimensions. See

Appendix P.
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11.3 TAYLOR SERIES FOR TRIGONOMETRIC FUNCTIONS

The functions cosx and sinx may be written as power series in x. These

expansions reveal a beautiful relation between trig functions and the ex-

ponential function ex. We shall see that the exponential of an imaginary

variable iθ (where i =
√
−1) is a combination of cos θ and sin θ. This is not

merely a wonderful but abstract relationship; it leads to important practical

methods of analysis, such as the Laplace transform.

Example 3. Derive the Taylor series expansion for cosx, around x = 0. (In

other words, the result will be the Maclaurin series for cosx.)

Solution. Let f(x) = cosx. The Taylor series expansion [recall Eq. (7-xx)

or (7-yy)] around x = 0 is

f(x) = f(0) + f ′(0)x+
1

2!
f (2)(0)x2

+
1

3!
f (3)(0)x3 + · · ·+ 1

n!
f (n)(0)xn + · · · (11-20) eq:Tay

where f (n)(x) denotes the n th derivative of f(x). The first few derivatives

are shown in the table5

n f (n)(x) f (n)(0)

0 cosx 1

1 − sinx 0

2 − cosx −1

3 sinx 0

4 cosx 1

A simple pattern emerges, which repeats after every 4 steps. Note that the

fourth derivative f (4)(x) is the same as f(x), namely cosx, which is where we

started. So the next four derivatives are again {− sinx, − cosx, sinx, cosx}
and the pattern starts over again at n = 8. Thus

f (n)(x) =















cosx if n = 4ν (divisible by 4)

− sinx if n = 4ν + 1

− cosx if n = 4ν + 2

sinx if n = 4ν + 3

(11-21)

5Please verify the table, from the relations sin′ = cos and cos′ = − sin.
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where ν is any integer. The derivatives evaluated at x = 0 are

f (n)(0) =







+1 if n = 4ν

−1 if n = 4ν + 2

0 if n is odd.

(11-22)

Inserting these results into (
eq:Tay
11-20), the Taylor series is

cosx = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 +− · · ·

=
∞
∑

k=0

(−1)k

(2k)!
x2k. (11-23) eq:TScos

The Taylor series of sinx can be derived by a similar calculation6 and the

result is

sinx = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 +− · · ·

=
∞
∑

k=0

(−1)k

(2k + 1)!
x2k+1. (11-24) eq:TSsin

The series in (
eq:TScos
11-23) and (

eq:TSsin
11-24) converge for any value of x.

? ? ?

The Taylor series for the other trigonometric functions are more compli-

cated. Consider the tangent function, g(x) = tanx. The first three nonzero

terms in the Taylor series are

tanx = x+
1

3
x3 +

2

15
x5 + · · · , (11-25)

and the full series is complicated and has no particular interest. However, it

will turn out that the inverse function, arctanx, has a simple and interesting

Taylor series.

11.3.1 Cosine, sine, and exponential

The cosine and sine functions originate in trigonometry—the analysis of plane

triangles. This branch of mathematics is necessary for practical applications

such as surveying, civil engineering, and statics and dynamics of mechanical

systems. Through calculus we discover something else about the cosine and

sine functions: They are related to the exponential function with a complex

variable.7

6Exercise
exer:TSsin
??.

7The complex numbers are numbers that have both real and imaginary components,

x + iy where i =
√

−1.
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In general any complex number z may be written as

z = x+ iy

where x and y are real,

x = Re z and y = Im z.

The exponential function ez is defined for a complex variable z through the

power series,

ez = 1 + z +
z2

2!
+
z3

3!
+ · · ·+ zn

n!
+ · · ·

=

∞
∑

n=0

zn

n!
. (11-26) eq:psexp

If z is real, z = x, then (
eq:psexp
11-26) is the Taylor series expansion for ex, which

was derived in Chap. 10.

If z is imaginary, z = iy with real y, then (
eq:psexp
11-26) separates into the

trigonometric series of cosine and sine. Writing the first few terms of the

series in (
eq:psexp
11-26), with z = iy,

eiy = 1 + iy − y2

2!
− iy3

3!
+
y4

4!
+
iy5

5!
− y6

6!
− · · ·

= 1− y2

2!
+
y4

4!
− · · ·+ i

[

y − y3

3!
+
y5

5!
− · · ·

]

. (11-27) eq:deriveEuler

All terms with an even power of y are real, and those with an odd power of y

are imaginary. The signs of the various terms are determined by the powers

of i,

i0 = 1, i1 = i, i2 = −1, i3 = −i, i4 = 1, etc. (11-28)

Any integer power of i must be one of the set {1, i, −1, −i }. If n is divisible

by 4 then in = 1; considering all integer powers,

in =















+1 if n = 4ν(divisible by 4)

+i if n = 4ν + 1

−1 if n = 4ν + 2

−i if n = 4ν + 3

(11-29)

where ν is any integer. Now examine the real and imaginary parts of (
eq:deriveEuler
11-27).

These are just the series (
eq:TScos
11-23) and (

eq:TSsin
11-24), respectively, for cos y and sin y.

Hence

eiy = cos y + i sin y. (11-30) eq:Euler
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This identity is called Euler’s relation. It shows that the exponential and

trigonometric functions are intimately related, through complex numbers.

Equation (
eq:Euler
11-30) expresses the exponential in terms of cosine and sine,

eiθ = cos θ + i sin θ. (11-31) eq:Eulertheta

Conversely, we may express cosines and sines in terms of exponential func-

tions. First note that

cos(−θ) = cos θ and sin(−θ) = − sin θ. (11-32)

Then by (
eq:Eulertheta
11-31)

e−iθ = cos θ − i sin θ. (11-33) eq:Eulernegth

Adding (
eq:Eulertheta
11-31) and (

eq:Eulernegth
11-33) the i sin θ terms cancel and we obtain the cosine,

cos θ =
eiθ + e−iθ

2
. (11-34) eq:cosexp

Subtracting (
eq:Eulernegth
11-33) from (

eq:Eulertheta
11-31) we obtain the sine,

sin θ =
eiθ − e−iθ

2i
. (11-35) eq:sinexp

In deriving (
eq:cosexp
11-34) and (

eq:sinexp
11-35) we have explicitly assumed that θ is real,

so that iθ is purely imaginary. But in fact all the calculations would be

equally valid for complex numbers, and we may write in general

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
(11-36) eq:cosz

for any complex number z. Equations (
eq:cosz
11-36) may be taken as the definitions

of trig functions for complex z, with the complex exponential defined by the

power series (
eq:psexp
11-26).
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11.4 THE INVERSE TRIGONOMETRIC FUNCTIONS

Inverse functions were introduced in Chapter 1. For example, consider the

inverse of the sine function, denoted sin−1:

x = sin θ ⇐⇒ θ = sin−1 x. (11-37)

Another notation for the inverse of sine is arcsin (read as “arc sine”),

arcsinx = sin−1 x. (11-38)

The name, arcsinx, is quite descriptive. Arcsinx is the angle whose sine is

x, because

θ = arcsinx ⇐⇒ x = sin θ. (11-39)

To define an inverse function, the function must be one-to-one.8 The function

sin θ is one-to-one for θ in [−π/2, π/2]; as θ varies from −π/2 to π/2, sin θ

varies from −1 to +1. Therefore the domain of arcsinx is x ∈ [−1, 1], and

the range is [−π/2, π/2]. Figure
fig:arcsin
?? shows a graph of arcsinx.

To determine the derivative of arcsinx we need the relation of differentials.

Let θ = arcsinx; then x = sin θ. From Sec. 11.2 we know the derivative

dx/dθ = cos θ; so the relation of differentials is

dx = cos θ dθ. (11-40)

In other words, if ∆x is a small change of x and ∆θ is the corresponding

change of θ then

∆x ≈ cos θ∆θ. (11-41) eq:dsinis

The approximation here is that we neglect terms with a higher order of

smallness than ∆x or ∆θ; the higher-order terms are negligible in the limit

∆x→ 0. But now we should express the ratio of changes as a function of x.

For θ in [−π/2, π/2] the trigonometric identity (
eq:id2
11-2) determines cos θ,

cos θ =
√

1− sin2 θ =
√

1− x2. (11-42) eq:cosid

Combining the results (
eq:dsinis
11-41) and (

eq:cosid
11-42), we find the derivative of arcsinx,

d

dx
arcsinx = lim

∆x→0

∆θ

∆x

=
1√

1− x2
. (11-43) eq:darcsin

8See Sec. 1.4.
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Note that the derivative is consistent with the slope of the curve in Fig.
fig:arcsin
??.

The slope is positive for all x in (−1, 1), is equal to 1 for x = 0, and tends to

∞ as x approaches ±1. The function 1/
√

1− x2 has the same behavior.

The function arccosx is similar to arcsinx, but has a different range.

Cos θ is a one-to-one function for θ from 0 to π (see Fig.
fig:sincos
??). Therefore

arccosx has domain [−1, 1] and range [0, π]. The relation of differentials for

x = cos θ is

dx = − sin θ dθ. (11-44)

So the derivative of θ = arccosx is

dθ

dx
=

−1

sin θ
=

−1√
1− cos2 θ

,

d

dx
arccosx =

−1√
1− x2

. (11-45) eq:darccos

The slope of arccosx is negative.9

Example 4. Differentiate g(ξ) = arctan ξ.

Solution. The function ξ = tan g is one-to-one for −π/2 < g < π/2; this is

evident from Fig.
fig:tan
??. The corresponding range is −∞ < ξ < ∞. Therefore

the domain of arctan ξ is (−∞,∞) and the range is (−π/2, π/2). A graph of

arctan ξ is shown in Fig.
fig:arctan
??. The relation of differentials is

dξ =

(

d tan g

dg

)

dg = sec2 g dg, (11-46)

so the derivative of arctan ξ is

dg

dξ
=

1

sec2 g
= cos2 g. (11-47)

But we must re-express the result as a function of ξ. Given that ξ = tan g,

what is cos g? Recalling the identities (
eq:id1
11-1) and (

eq:id2
11-2),

ξ =
sin g

cos g
=

√

1− cos2 g

cos g
. (11-48)

This may be solved for cos g in terms of ξ; after a bit of algebra the result is

cos2 g =
1

ξ2 + 1
. (11-49)

9Exercise
exer:dacos
??.
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f(x) f ′(x) f(x) f ′(x)

arcsinx
1√

1− x2
arccosx

−1√
1− x2

arctanx
1

x2 + 1
arccotx

−1

x2 + 1

arccscx
−1

x
√
x2 − 1 arcsecx

1

x
√
x2 − 1

Table 11.2: Derivatives of the inverse trigonometric functions. tbl:dinv

Hence the derivative of arctan ξ is

d

dξ
arctan ξ =

1

ξ2 + 1
. (11-50) eq:darctan

Note that the derivative in (
eq:darctan
11-50) agrees with the slope of arctan ξ in Fig.

fig:arctan
??. The slope is maximum at ξ = 0 and approaches 0 as ξ → ±∞.10

Table
tbl:dinv
11.2 lists the derivatives of all the inverse trigonometric functions.

11.4.1 The Taylor series for arctanx

Something interesting occurs in differentiating the inverse trig functions.

Consider, for example, F (x) = arctanx. We start with a transcendental

function. But F ′(x) is merely algebraic,

F (x) = arctanx and F ′(x) =
1

x2 + 1
. (11-51)

Now all the higher derivatives will also be algebraic,

F (2)(x) =
−2x

(x2 + 1)2
, F (3)(x) =

6x2 − 2x

(x2 + 1)3
, etc. (11-52)

A very beautiful result that we may now derive is the Maclaurin series

for arctanx, i.e., the Taylor series around x = 0. We’ll start with F ′(x), for

which the Maclaurin series can be written by inspection,

F ′(x) = 1− x2 + x4 − x6 + x8 −+ · · · (11-53) eq:serFp

i.e., simply the geometric series for 1/(x2 + 1). Now, what is the function

F (x) whose derivative is (
eq:serFp
11-53)? Each term on the right side of (

eq:serFp
11-53) is a

10Exercise
exer:datan
??.
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power±xp; and the function with derivative±xp is ±xp+1/(p+1). Therefore,

F (x) = x− 1

3
x3 +

1

5
x5 − 1

7
x7 +

1

9
x9 −+ · · · . (11-54) eq:arctanTS

Thus arctanx has a simple Taylor series. A striking example of the series

occurs for x = 1. note that F (1) = arctan 1 = π/4, and hence

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
−+ · · · . (11-55) eq:Leibnizseries

In words, the alternating series of reciprocal odd integers is equal to π/4.

This amazing result was published by Leibniz in 1674, and known earlier to

James Gregory. It shows that the transcendental number π is in fact a very

simple number: it can be expressed using each odd integer exactly once.
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11.5 THE HARMONIC OSCILLATOR

A general physics problem, with extensive applications in both science and

engineering, is to describe vibrations. The simplest example is the harmonic

oscillator, illustrated in Fig.
fig:ho
??. We shall see that sinusoidal functions (cos θ

or sin θ) describe the motion.

Imagine a mass m that moves along the x axis, always attracted to the

origin by a force proportional to the distance from the origin,

F = −kx. (11-56)

The positive constant k is called Hooke’s constant.11 If x is positive then F is

negative (i.e., the force is to the left, toward the origin); if x is negative then

F is positive (i.e., the force is to the right, also toward the origin). Such a

force is called a restoring force because it always acts in the direction toward

the equilibrium position, x = 0. The fact that the restoring force for an

elastic spring is proportional to the displacement from equilibrium is called

Hooke’s law. The linear relation, force ∝ − displacement, is characteristic of

all kinds of small vibrations.

The equation of motion for the position x(t) of m as a function of time t

is

m
d2x

dt2
= −kx(t); (Newton’s second law) (11-57) eq:dyn1

or,

d2x

dt2
= −ω2x(t) where ω =

√

k

m
. (11-58) eq:dyn2

The general solution of (
eq:dyn2
11-58) requires a function whose second derivative

is the opposite of itself. Now think about cos θ.12 Its derivative is − sin θ,

and the derivative of that is − cos θ. So the second derivative of cos θ is

− cos θ. This functional property is just what we are looking for! We can

also multiply by a constant A. Also, the variable θ should be linear in t and

dimensionless, which suggests θ = ωt − δ. So, we are led to try the general

solution

x(t) = A cos(ωt− δ). (11-59) eq:general

11Robert Hooke (1635 – 1703) was a contemporary of Isaac Newton. The two men had

a rather unfriendly relationship due to controversies over their relative merit in science.
12We could alternatively use sin θ to describe the oscillating position. The functions

cos θ and sin θ are really equivalent for this purpose, because they differ only by a phase

shift.
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Indeed this function does obey the differential equation (
eq:dyn2
11-58):

dx

dt
= −ωA sin(ωt− δ)

d2x

dt2
= −ω2A cos(ωt− δ) = −ω2x.

There are two constant parameters, A and δ, in the general solution. These

will be determined if some initial conditions of the system are specified.

Example 5. Suppose the mass m in Fig.
fig:ho
?? is pulled to the position x =

3cm, held at rest at that point, and then released at time t = 0. Determine

x as a function of t.

Solution. Two initial conditions are given. The position at t = 0 is x(0) =

3 cm. The velocity at t = 0 is 0 (i.e., m is released from rest) so x′(0) =

0. Applying these conditions to the general solution (
eq:general
11-59) we obtain two

equations for the two unknown parameters, A and δ,

x(0) = A cos δ = 3 cm (11-60) eq:IC1

x′(0) = ωA sin δ = 0. (11-61) eq:IC2

The second equation is satisfied by δ = 0. Then the first equation implies

A = 3cm. The result is

x(t) = (3 cm) cosωt. (11-62)

Figure
fig:hograph
?? shows a graph of x versus ωt. Note that the slope of x versus t,

which is the velocity, is 0 at t = 0, as required. The mass m oscillates back

and forth between +3 cm and−3 cm with a period of T = 2π/ω. For example,

at time t = T the mass is again at the initial point and instantaneously at

rest.

Example 6. If the period of the harmonic oscillator in Fig.
fig:ho
?? is 0.5 s, and

the oscillating mass is 150 g, what is Hooke’s constant for the spring, in N/m?

Solution. The period of oscillation is

T =
2π

ω
= 0.5 s, (11-63)

and note that ω = 2π/T . But ω is defined in (
eq:dyn2
11-58), which implies k = mω2.

Thus Hooke’s constant is

k =
4π2m

T 2
=

4π2 × 150× 10−3 kg

(0.5 s)2

= 2.4 N/m. (11-64)
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(The newton N is 1 kgm/s2.)

Example 7. Let ω be 12 s−1. Suppose the mass m is initially (at t = 0)

at position x = 3 cm, and is given an initial velocity (toward larger x) of

24 cm/s. At what time will m first pass the equilibrium point? What is the

instantaneous velocity at that time?

Solution. We will need the parameters A and δ in the general solution

(
eq:general
11-59). The initial conditions in this case are

x(0) = A cos δ = 3 cm,

x′(0) = ωA sin δ = 24 cm/s ⇒ A sin δ = 2 cm. (11-65) eq:eqsforpars

We may solve for A by adding the squares,

A2 = (A cos δ)2 + (A sin δ)2 = 13 cm2

A = 3.61 cm; (11-66)

and then solve the second equation in (
eq:eqsforpars
11-65) for δ,

δ = arcsin

(

2

3.61

)

= 0.587. (11-67)

The position as a function of time is A cos(ωt − δ). The time t0 when m

passes the origin (x = 0) is given by

ωt0 − δ =
π

2
⇒ t0 =

1

ω

(π

2
+ δ

)

= 0.18 s. (11-68)

The velocity at that time is

x′(t0) = −ωA sin(ωt0 − δ) = −ωA = −43.3 cm/s. (11-69)

The negative velocity indicates that m is moving toward smaller x, i.e., in

the negative x direction, as m passes the origin at time t0.

11.5.1 Kinetic and Potential Energy

The kinetic energy of a mass m moving with velocity v is K = 1
2mv

2. The

potential energy of a spring k extended or compressed by length x is U =
1
2kx

2. The total energy of the harmonic oscillator in Fig.
fig:ho
?? is a constant of

the motion.

The energies of the harmonic oscillator, for the general solution (
eq:general
11-59),

are

K(t) =
1

2
m

(

dx

dt

)2

=
1

2
mω2A2 sin2(ωt− δ), (11-70)
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U(t) =
1

2
kx2 =

1

2
kA2 cos2(ωt− δ). (11-71)

Then the total energy is

E = K(t) + U(t) = 1
2kA

2 (11-72)

where mω2 has been replaced by k in accord with (
eq:dyn2
11-58), and the trigono-

metric identity (
eq:id2
11-2) has been used. The energy is a constant of the mo-

tion.13

Conservation of energy is one of the great unifying principles in science.

Its simplest expression is in mechanics, where kinetic energy plus potential

energy is constant. The harmonic oscillator is a basic example of this princi-

ple.

?

The system in Fig.
fig:ho
?? is very simple. We have ignored friction or other

damping forces, so the oscillations would continue forever with constant am-

plitude. Although this is an idealized example, it is important because all

vibrating systems with small amplitudes resemble the harmonic oscillator

mathematically, over times small enough that damping is negligible. In par-

ticular, the sinusoidal functional form of the oscillating variable is common.

Why does the behavior of vibrations depend on a trig function, cos θ or

sin θ? After all, the physical problem has nothing to do with right triangles—

the trigonometric origin of the sine and cosine. But nature is simple, reusing

the same functions for different applications. It is because of calculus that

harmonic oscillations are sinusoidal. The dynamical equations of a harmonic

oscillator are

dx

dt
= v and

dv

dt
= −ω2x. (11-73)

These are dual relations between the position x(t) and velocity v(t). Note

the resemblance to the derivatives of f(θ) ≡ sin θ and g(θ) ≡ cos θ,

df

dθ
= g and

dg

dθ
= −f. (11-74)

Only the sine and cosine functions have these dual relations of derivatives,

so these functions are key to the mathematics of vibrations.

13Exercises
exer:const1
?? and

exer:const2
??.
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11.5.2 Harmonic waves

Harmonic oscillations, and the sinusoidal functions, also occur in waves. But

the function for a wave depends on multiple variables—spatial coordinates

and time.

In general, what is a wave?

A wave is a geometrical structure that is extended in space, and that

oscillates in both space and time. Many physical phenomena involve waves:

sound, light, motion of a violin string, water height in the ocean, etc. In

any harmonic wave, some quantity varies sinusoidally, both as a function of

position for fixed time and as a function of time for fixed position. Examples

of oscillating quantities in various wave phenomena are listed in the table:

phenomenon oscillating quantities

sound pressure and density

light electric and magnetic fields

violin music transverse displacements

of the string and box

ocean wave vertical displacement

of the water surface

Figure
fig:wave
?? illustrates a general wave motion. The wave moves in the x

direction, and Q(x, t) is the quantity that varies in the wave. Figure
fig:wave
?? shows

a snapshot of the wave—a graph of Q versus x at an instant of time. Now

imagine what happens as the wave moves to the right. The shape remains

sinusoidal, but the positions of crests, troughs, and nodes travel along the x

axis. An observer at a fixed point will find Q varying in time as the wave

moves past the observer’s position. For example, suppose Jack is at the

origin and Jill is one-half wavelength to the right. Both observe Q = 0 at the

time in Fig.
fig:wave
??. But as the wave moves (to the right) Q decreases for Jack

(becoming negative) and increases for Jill (becoming positive) until the wave

has moved one-quarter wavelength. At that time, the trough (minimum Q) is

by Jack while the crest (maximum Q) is by Jill. As time passes, Q oscillates

for both Jack and Jill.

The function Q(x, t) that describes a harmonic wave moving in one di-

mension (x) is

Q(x, t) = A cos (kx− ωt− δ) . (11-75) eq:wavefun

There are four parameters. A is the amplitude, i.e., the maximum size of

Q; Q oscillates between −A and +A. δ is the phase shift, which determines

the positions and times for wave crests, troughs, and nodes. k and ω are

related to the wavelength and frequency. Cos θ is a periodic function of θ,
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with perion 2π,

cos(θ + 2π) = cos θ.

Therefore Q(x, t) has the same value at x and x + λ (at the same time t)

where kλ = 2π; the wavelength is λ = 2π/k. Similarly, Q(x, t) has the same

value at t and t + τ (at the same location x) where ωτ = 2π; the period of

oscillation is τ = 2π/ω and the frequency is f = 1/τ = ω/2π.

Throughout science and engineering, waves are described by sinusoidal

functions, sin θ or cos θ.
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