Constant Velocity

\[v = v_0 \quad \text{(constant)} \]
\[D = v_0 t \quad \text{(distance = velocity \times time)} \]
\[x = x_0 + v_0 t \quad \text{(coordinate position)} \]

Constant Acceleration

\[v = v_0 + at \]
\[D = v_0 t + \frac{1}{2} at^2 \]
\[x = x_0 + v_0 t + \frac{1}{2} at^2 \]
Mathematica Commands

- To define a function \(f \) of \(u \)
 \[
 f[u_] := u^2 + 3u + 5
 \]
 (or whatever)

- To plot a function \(f(u) \)

 \[
 \text{Plot}\left[f[u], \{u, u_1, u_2\},
 \quad \text{Plot Range} \rightarrow \{\{a, b\}, \{c, d\}\}\right]
 \]
 \[
 \{a, b\} = u \text{ range on the graph}
 \]
 \[
 \{c, d\} = f \text{ range on the graph}
 \]

- To solve an equation, numerically,

 \[
 \text{FindRoot}\left[\text{eq}, \{s, s_0\}\right]
 \]
 \[
 \text{eq} \text{ is the equation}
 \]
 \[
 s \text{ is the variable to be solved for}
 \]
 \[
 s_0 \text{ is an initial guess for the solution}
 \]