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2. The Limit Concept

June 10, 2002

2.1 INTRODUCTION

There are three primary concepts in calculus—limit, derivative, and inte-
gral. The most important for applications in science and engineering are the
derivative (which describes a rate of change) and the integral (which describes
the total of many small parts). But the most basic of the three concepts is
the limit, because the derivative and integral are defined as certain limits.
So this chapter begins our study of calculus with the concept of the limit.

The limit of a function f(x) at a point x0 is the number that we obtain
by evaluating f(x) for values of x closer and closer to x0 but not actually
equal to x0. We’ll make this definition more precise later. The limit of f(x)
at x0 is denoted by

lim
x→x0

f(x). (2-1) eq:notlim

The notation x→ x0 is read as “x approaches x0.”
The quantity represented by (

eq:notlim
2-1) is a single number, if the limit exists.

For many simple functions the limit is just the function value f(x0). But the
limit is not necessarily equal to f(x0). For example, x0 might be excluded
from the domain of f(x), so that f(x0) is not even defined; but the limit of
f(x) at x0 may nevertheless be a well-defined number. Another example is
when the function f(x) has a discontinuity at x0; then a limit at x0 does not
exist. In the examples below we’ll analyze these and other cases, and learn
when the limit exists as a well-defined number and when it does not exist.

The key idea to keep in mind is that the limit of f(x) at x = x0 is
the number we obtain by evaluating f(x) for x arbitrarily close to, but not
actually equal to, x0.

Comment on jargon

The meaning of the word “limit” in calculus is rather different from the
everyday use of the word. In everyday usage, “limit” means some kind of
boundary beyond which one cannot (or should not) go. The speed limit is the
maximum allowed speed of a vehicle. To exceed this limit is to break the
law.

But in calculus, a limit is not really a boundary. Think of the real numbers
as a line. To find the limit of f(x) at x0 we might evaluate the function for
points x close to x0. But x0 is not necessarily any kind of boundary—it may
just be a point inside the domain. Then we must consider points both to the
right and left of x0.

In studying calculus and other technical subjects (including physics and
engineering) we must use words according to their technical definitions, and
ignore their meanings from everyday life. This kind of special terminology
is called jargon. The meaning of a word in everyday usage can be fuzzy and
ambiguous, but jargon is sharp and precise.
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2.2 EXAMPLES OF LIMITS

In Sec. 2.3 we’ll define the limit formally. But first let’s examine some exam-
ples, to see what the issues are.

Example 1. What is the limit of the function f(x) = (x + 1)2 at x = 2?

Solution. The value of f(x) at x = 2 is 9. If we evaluate f(x) for numbers
near 2 we obtain values near 9. For example,

f(2.01) = 9.0601 and f(1.99) = 8.9401. (2-2)

The closer we push x toward 2, the closer f(x) moves toward 9. So the limit
of f(x) at x = 2 is 9, and we write

lim
x→2

(x + 1)2 = 9. (2-3)

A very good way to analyze limits is to look at the graph of the function
in a neighborhood of the limit point x0. Figure

fig:Ex1
2.1 shows (x + 1)2 versus x.

The curve is smooth, and we see that as x moves to 2, from either the left or
the right, the function value approaches 9.

Figure 2.1: Example 1. The function f(x) = (x + 1)2 versus x.
The limit at x = 2 is 9. fig:Ex1

Generalization. If the function f(x) has a smooth graph and the point
x0 is in the domain of f(x) then the limit of f(x) at x0 is simply the function
value f(x0).

Not all functions have smooth graphs. The next two examples illustrate
how the limit may differ from the function value.

Example 2. Consider the function g(x) defined by

g(x) =

{

2 if x 6= 0
1 if x = 0.

(2-4)
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A graph of g(x) is illustrated in Fig.
fig:Ex2
2.2. What is the limit of g(x) at x = 0?

Figure 2.2: Example 2. The limit of g(x) at x = 0 is 2, although
the function value is g(0) = 1. fig:Ex2

Solution. If we evaluate g(x) for points close to x = 0 we obtain 2, no
matter how close we get to x = 0, as long as x is not exactly 0. Therefore,

lim
x→0

g(x) = 2. (2-5)

But the function value at x = 0 is g(0) = 1. The limit at x = 0 exists and is
well-defined: it is 2. But the limit is not equal to the function value.

To a mathematician, the function g(x) in Example 2 is a perfectly good
function. It satisfies the requirements for the definition of a function. To a
physicist or engineer, the function g(x) seems a bit artificial, i.e., unnatural.
Is there any quantity in nature described by such a function—equal to 2 for
all values of the independent variable except 0, and 1 for the value 0? This is
not a function we are likely to encounter in natural science! But mathematics
must allow all possibilities, and the example shows that a limit may exist and
differ from the function value.

Example 3. Consider the function h(x) defined by

h(x) =

{

2 for x ≥ 0
1 for x < 0.

(2-6)

A graph of h(x) is shown in Fig.
fig:Ex3
2.3. In theoretical physics h(x) is called a

step function. It is the mathematically simplest example of a discontinuity.
What is the limit of h(x) at x = 0?

Solution. If we evaluate h(x) for points near x = 0 we may get 1 or 2. If
x is negative we get h(x) = 1; if x is positive we get h(x) = 2. The limit
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Figure 2.3: Example 3. The function h(x) has a discontinuity at
x = 0. fig:Ex3

at x = 0 is undefined because the function doesn’t have a unique value for
points approaching x = 0. One could say that there are two limits: h(x)
approaches 2 as x approaches 0 from the positive side; and h(x) approaches
1 as x approaches 0 from the negative side. (These two values are called
one-sided limits.) But there is no single limit, i.e.,

lim
x→0

h(x) does not exist. (2-7)

We’ll see in the formal definition of the limit (next section) that all points

sufficiently near x0 must have function values near the limit in order for the
limit to be defined. Because h(x) has a discontinuity at x = 0 the condition
cannot be satisfied; h at points to the right of 0 is quite different from h at
points to the left.

Discontinuities occur in nature, or at least in our theories of nature. In
fact they are common. For example, at the surface of a lake there is a
discontinuity of mass density: Just below the surface the density is 1 g/cm3

(water) while just above it is 10−3 g/cm3 (air). On the atomic scale the
discontinuity is different, but we would not use atomic physics to describe
water waves on the surface of the lake. So a practical theory of hydrodynamics
must allow discontinuity of density. Or, as another example, the electric field
is discontinuous at the surface of a charged metal object: The electric field
is 0 inside a conductor and σ/ε0 just outside the conductor where σ is the
charge per unit area on the surface. On the atomic scale the discontinuity is
different, but we would not use atomic physics to calculate the electric field of
a van de Graaff generator. So a practical theory of electrostatics must allow
discontinuity of the field. These physical examples show that discontinuous
functions, like h(x) in Example 3, must be included in our mathematics.
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Examples with zero over zero

Example 4. Let

F (x) =
1− x

1− x2
. (2-8) eq:Ex4

What is the limit of F (x) at x = 1?

Solution. The point x = 1 is not in the domain of F (x), because the
denominator in (

eq:Ex4
2-8) is 0 at x = 1. Division by 0 is undefined! So this

example asks for the limit of a function at a point that is not in the domain.
If we naively try to evaluate F (x) at x = 1, we obtain 0/0. This “object”

is not a number. It is an indeterminate result, because division by 0 is just
undefined in mathematics. However, the limit at x = 1 may still exist.

Figure
fig:Ex4
2.4 shows a graph of F (x) versus x. It is clear from the graph that

the limit of F (x) at x = 1 is well-defined and is a number near 0.5. In fact
we’ll prove that the limit is exactly 1/2.

Figure 2.4: Example 4. The function F (x) is undefined at x = 1,
but has a well-defined limit; the limit at x = 1 is 1/2. Example
7. The function is singular, and has no limit, at x = −1. fig:Ex4

If x 6= 1 then we may simplify the expression for F (x) by noting that 1−x2 =
(1 − x)(1 + x) and canceling the common factors (1 − x) in the numerator
and denominator,

1− x

1− x2
=

1

1 + x
provided x 6= 1. (2-9)
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Now, if we evaluate this simplified form for x near 1 we obtain a number near
1/2; and the closer x approaches 1 the closer the value of F approaches 1/2.
So the limit of F (x) is

lim
x→1

1− x

1− x2
=

1

2
. (2-10)

This example is a case where the limit exists at a point where the function
is undefined.

Generalization. If the naive evaluation of a function f(x) at x = x0 gives
the indeterminate result 0/0, then we have more work to do to determine the

limit of f(x) at x0. Finding 0/0 does not mean that the limit does not exist:
The previous example has 0/0 for the naive evaluation, but the limit does
exist. However, to find the limit we must analyze the function more carefully
than just the naive evaluation.1

Example 5. Find the limit at x = 3 of

G(x) =
x3 − 27

x− 3
. (2-11) eq:examp5

Solution. The naive evaluation gives 0/0. We have more work to do to
determine the limit as x → 3. We should try to cancel the factor x− 3 that
is making the numerator and denominator 0. Note that we can factor the
numerator as

x3 − 27 = (x − 3)(x2 + 3x + 9). (2-12) eq:factd

Therefore, for x 6= 3 the factor (x − 3) in (
eq:factd
2-12) cancels the denominator in

(
eq:examp5
2-11) and the function is

G(x) = x2 + 3x + 9. (for x 6= 3) (2-13)

As x approaches 3 the function approaches 27, so

lim
x→3

x3 − 27

x− 3
= 27. (2-14)

Example 6. Consider the function

A(θ) =
sin θ

θ
. (2-15)

(Whenever the sine or cosine function appears in calculus, it is understood
that the argument (here, θ) is expressed in radians.) What is the limit of
A(θ) at θ = 0?

Solution. This is another case where naive evaluation gives 0/0. As in the

1L’Hôpital’s Rule is a standard technique, described in Chap. 7.
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other cases, 0/0 tells us nothing. We have more work to do. But unlike the
other cases, which could be simplified algebraically, there is no simple way
to factor out θ from sin θ; the function sin θ is not algebraic. So how can we
find the limit at θ = 0?

We could plug in some specific values of θ to get an idea of the numerical
values of sin θ/θ. Please use a calculator to verify the values in this table:

θ A(θ)

1 0.841
0.1 0.9983
0.01 0.999983
0.001 0.99999983

Plainly, the limit is 1. But this is just a numerical experiment, not a proof.
We could also plot a graph of A(θ), Figure

fig:sinex
2.5.2 Again it is clear that the

limit at θ = 0 is 1, but this is still a numerical experiment.

Figure 2.5: Example 6. The function A(θ) is undefined at θ = 0;
the limit at θ = 0 is 1. fig:sinex

To prove rigorously that

lim
θ→0

sin θ

θ
= 1 (2-16)

requires methods of calculus. The slope of sin θ at θ = 0 is 1 (by calculus) so
if θ is very small, a valid approximation of the function is

sin θ ≈ θ for small θ. (2-17)

Then the function sin θ/θ is 1 in the same approximation. Figure
fig:sinandlin
2.6 shows a

graph of sin θ and its linear approximation θ, versus θ. The figure illustrates
that the line with slope 1 is the tangent line at θ = 0, so that sin θ ≈ θ. Thus
the limit of A(θ) as θ → 0 is 1. We’ll return to this example in Chapter 11
when we analyze the slope (or, derivative) of the sine function.

2Please reproduce this graph using a graphing calculator.
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Figure 2.6: Comparison of sin θ (solid curve) and θ (dashed
curve). For small θ, sin θ is approximately equal to θ. fig:sinandlin

Example 7. Consider again the function F (x) in Example 4. What is the
limit of F (x) at x = −1?

Solution. The naive evaluation is 2/0, which is undefined. Figure
fig:Ex4
2.4 shows

a graph of F (x). As x approaches −1 from the right the function increases
without bound to +∞; as x approaches −1 from the left the function is
negative and decreases without bound to −∞. Obviously there is no limit—
no number that the function is near for all points in a small neighborhood of
x = −1. The limit does not exist.
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2.3 FORMAL DEFINITION OF THE LIMIT — EPSILONS AND
DELTAS

Now that we have seen some examples, we are ready to study a precise
definition of the limit.

Definition. The limit of f(x) at x0 is a number A if for
every ε, no matter how small but with ε > 0, there exists
a δ (greater than 0) such that |f(x)−A| < ε for all x with
0 < |x− x0| < δ.

Figure
fig:epdel
2.7 illustrates the definition pictorially. No matter how small ε is,

there exists a δ such that all the points in the domain interval (x0−δ, x0 +δ)
(omitting x0) have f(x) in the range interval (A− ε, A + ε). No matter how
small the ε-neighborhood of A is chosen, there exists a δ-neighborhood of x0

such that all points in it (omitting x0) have f(x) in the ε-neighborhood.

Figure 2.7: Illustration of the formal definition of the limit. For
an arbitrarily small ε (but greater than 0) |f(x)−A| is less than
ε for all x in the interval [x0 − δ, x0 + δ]. Then the limit of f(x)
at x = x0 is A. fig:epdel

To prove that some function F (x) has a limit, say C, at x = x0, we should
in principle prove that all the points (omitting x0) in some sufficiently small
neighborhood of x0 have F (x) within the interval (C − ε, C + ε) for any
arbitrarily small ε. But that kind of formal proof can be rather tedious, so
we usually rely on simpler methods, as in the examples in Sec. 2.2. However,
if there is any question about the limit then the rigorous proof must be
supplied.
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2.4 GENERAL THEOREMS ON LIMITS

Suppose f(x) approaches A, and g(x) approaches B, as x approaches x0,

lim
x→x0

f(x) = A and lim
x→x0

g(x) = B. (2-18)

Then combinations of f(x) and g(x) have known limits. We’ll prove

lim
x→x0

[f(x) + g(x)] = A + B, (2-19) eq:gen1

lim
x→x0

f(x)g(x) = AB, (2-20) eq:gen2

and several other related results.
Let ε be an arbitrarily small number (but ε > 0). To prove (

eq:gen1
2-19) we

must show that there exists a δ (greater than 0) such that

|f(x) + g(x)−A− B| < ε for all x with 0 < |x− x0| < δ.

Note that δ1 and δ2 exist such that

|f(x)−A| < ε

2
for |x− x0| < δ1,

|g(x)−B| < ε

2
for |x− x0| < δ2.

By the triangle inequality,

|f(x) + g(x)−A− B| ≤ |f(x) −A|+ |g(x)−B|. (2-21) eq:prg1

Now let δ be the smaller of δ1 and δ2. Then for |x− x0| < δ,

|f(x) + g(x)−A− B| < ε/2 + ε/2 = ε. (2-22)

Hence (
eq:gen1
2-19) is proven.

The inequality (
eq:prg1
2-21) is an example of the triangle inequality. Let α and

β be any real numbers. The triangle inequality is

|α + β| ≤ |α|+ |β|. (2-23) eq:triangle

If α and β have the same sign, then (
eq:triangle
2-23) is true because |α+β| = |α|+ |β|.

If α and β have opposite signs, then (
eq:triangle
2-23) is true because |α+β| < |α|+ |β|.

Next we’ll prove (
eq:gen2
2-20). Again, let ε be arbitrarily small (but > 0). We

must show that there exists a δ such that

|f(x)g(x)−AB| < ε for all x with 0 < |x− x0| < δ.

Note that δ1 and δ2 exist such that

|f(x)−A| < ε1 for |x− x0| < δ1,

|g(x)−B| < ε2 for |x− x0| < δ2,

for any ε1 and ε2. Start with the identity

fg −AB = (g −B)f + (f −A)g − (f −A)(g −B). (2-24)
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(For short we write f for f(x) and g for g(x).) Using the triangle inequality,
and assuming for simplicity that A and B are positive,

|fg −AB| ≤ |(g −B)f |+ |(f −A)g|+ |(f −A)(g −B)|
= |g −B||A + (f −A)|+ |f −A||B + g −B|+ |f −A||g −B|
≤ |g −B|(A + |f −A|) + |f −A|(B + |g −B|) + |f −A||g −B|
= A|g −B|+ B|f −A|+ 3|f −A||g −B|
< Aε2 + Bε1 + 3ε1ε2.

By making ε1 and ε2 small enough, we can certainly make the final expression
be less than ε. Then, taking δ to be the smaller of δ1 and δ2, |fg −AB| < ε
for |x− x0| < δ. The theorem is proven.

Some related general theorems, proofs of which are left as exercises, are

lim
x→x0

cf(x) = cA (c a constant), (2-25)

lim
x→x0

[f(x)− g(x)] = A−B, (2-26)

lim
x→x0

f(x)/g(x) = A/B, (2-27)

lim
x→x0

[f(x)]p = Ap. (2-28)

The general theorems are useful, because they can be used to evaluate limits
of functions that can be separated into two or more parts. For reference, the
general theorems are recorded in Table

tbl:gt
2.1.

Example 8. Determine the limit

lim
x→5

(x2 + 4)
√

x + 5

2x
. (2-29)

Solution. Treat the function as three factors: (x2 + 4) → 29; (2x) → 10;
and

√
x + 5 →

√
10. By the general theorem (

eq:gen2
2-20), extended to 3 factors,

the limit of the product is the product of the limits, 29/
√

10.
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lim(f + g) = lim f + lim g

lim(f − g) = lim f − lim g

lim(Cf) = C lim f

lim(fg) = lim f × lim g

lim(f/g) = lim f/ lim g

lim (fp) = (lim f)
p

Table 2.1: General Theorems for Limits. It is assumed that f(x)
and g(x) have well-defined limits at the limit point; then the limits
of combinations of f(x) and g(x) are listed in the table. (C and
p denote constants.) tbl:gt
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2.5 INFINITY

What is infinity? It is not a number, but a limit. Infinity (∞) is the limit
of a variable that increases without bound. So, for example, moving to the
right on the real line at a constant pace is approaching infinity.

Infinity may seem like mere abstract mathematics, but infinity occurs of-
ten in calculations in science and engineering. Of course no real physical
system can be truly infinite (except, perhaps, the entire cosmos). But physi-
cists will often need to analyze the infinite limit in physical theories. For
example, the energy flux at infinity is a useful concept in antenna theory.
Or, a nuclear scattering experiment measures the subatomic particles at in-

finity. In these examples, “at infinity” means in the limit of distances that
are much larger than any dimension of the primary physical system (antenna
or nucleus, respectively).

In the study of functions, infinity may appear in two ways: either as
x →∞ or as f →∞. We’ll explore these cases in the next two examples.

Example 9. What is the limit of K(ξ) = (ξ2 + 1)/(ξ2 + 2) as ξ →∞?

Solution. The limit is 1,

lim
ξ→∞

ξ2 + 1

ξ2 + 2
= 1. (2-30)

This result should be clear. If ξ is very large (ξ � 1) then ξ2 + 1 and ξ2 + 2
are both essentially ξ2, so the ratio is 1. More rigorously, note that

ξ2 + 1

ξ2 + 2
= 1− 1

ξ2 + 2
,

and the second term obviously approaches 0 as ξ →∞.

?
The formal definition of a limit as x → ∞ is different from the case

x → x0. Instead of small ε and small δ, we have small ε and large D:

Definition. The limit of f(x) as x →∞ is A if for every
small ε there exists a large D such that |f(x)−A| < ε for
all x with x > D.

The independent variable may also go to −∞. The condition for the limit to
be A′ as x → −∞ is |f(x)−A′| < ε for all x with x < −D.

?

Example 10. In electrostatics, the magnitude of the force between two
positive charges, q1 and q2, is

F (r) =
q1q2

4πε0r2
(2-31) eq:Coulomb
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where r is the distance between the charges. What is the limit of F (r) as
r → 0?

Solution. The limit is ∞. This is a case where the independent variable is
finite but the function goes to infinity.

This singularity at r = 0 is somewhat unphysical. We are assuming that
the charges are points so that the distance between them can go to 0. In
electrical engineering any real charged object would have a nonzero size, so
the force equation (

eq:Coulomb
2-31) would not hold down to r = 0. However, in atomic

physics the electron is treated as a point charge. The singularity at r = 0 is
modified by quantum theory, but nevertheless has great importance in the
theory, leading to renormalization of quantum electrodynamics.
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2.6 FINAL REMARK

The idea of the limit of a function f(x) at x = x0 is to study f(x) for x
approaching x0, but not exactly equal to x0. The function may be undefined
at x0 but still have a well-defined limit. Conversely, the function may be
defined at x0 but not have a limit.

Let’s consider a final example. Suppose F is some physical quantity that
varies with time t, i.e., a function F (t). Now consider

R(h) ≡ F (t + h)− F (t)

h
(2-32)

where h is a small time interval; and regard R(h) as a function of h for some
specified time t. What is the limit of R(h) at h = 0? R is undefined at
h = 0 because of division by 0. However, the limit as h→ 0 is a well-defined
number. This limit,

lim
h→0

F (t + h)− F (t)

h
, (2-33)

is the derivative of F (t). It represents the instantaneous rate of change of
the quantity F . The next few chapters are all about derivatives.
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EXERCISES

Section 2: Examples of limits

2-1. Cases in which the limit equals the function value. For each case,
determine the limit, sketch a graph of the function, and indicate the limit
point on the graph.

(a) lim
x→5

2x2 (b) lim
y→−1/2

1

y + 1
(c) lim

θ→3π/4
tan θ (d) lim

t→2
10−t

(e) lim
x→1

1√
x2 + 1

(f) lim
x→a

1√
x2 + b2

2-2. Cases in which the limit point is not in the domain of the function. For
each case, naive evaluation gives 0/0, so more work is needed to figure out
the limit. Determine the limit, sketch a graph of the function, and indicate
the limit point on the graph.

(a) lim
x→5

x2 − 25

x− 5
(b) lim

x→5

x− 5

x2 − 25

(c) lim
ξ→−2

ξ + 2

ξ2 − 4

(d) lim
x→1

x− 1

2x−
√

x2 + 3
Hint: Multiply and divide by 2x +

√
x2 + 3.

(e) lim
x→c

√
x + 1− c− 1

x− c
(c a constant).

Hint: Use the same trick as in (d).

(f) lim
φ→π

tan φ

π − φ
(g) lim

x→0

ln(1 + x)

x

2-3. For each case, determine whether the limit exists. If it exists, give the
limit; if it does not exist, explain why not.

(a) lim
x→−1

1

1− x2
(b) lim

x→0

√
x4

(c) lim
φ→0

cot φ (d) lim
φ→0

sin φ× cotφ

Section 3: Formal definition of the limit

2-4. Each of the cases below has the form lim
x→x0

f(x) = A. For each case,

determine the maximum δ such that |f(x)−A| < ε for all x with |x−x0| < δ.

(a) lim
x→2

x2 = 4. (b) lim
x→3

1

x
=

1

3
.
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(c) lim
x→1

√

x2 + 1 =
√

2. (d) lim
x→0

2x + 3

x2 + 4
=

3

4
.

Section 4: Infinity

2-5. Cases in which the independent variable approaches +∞ or −∞. For
each case, determine the limit and sketch a graph of the function showing
how it approaches the limit.

(a) lim
x→∞

ax2 + b

cx2 + d
where a, b, c, d are constants.

(b) lim
x→−∞

(x + 2)(x + 3)

x2 + 1
(c) lim

x→±∞

x√
x2 + 1

(d) lim
x→∞

3x2

(3x2 + 1)2
. (e) lim

x→∞

x2

√
x2 + 1

.

(f) lim
ξ→∞

ln ξ

ξ
(g) lim

ξ→−∞
ξ2eξ

General Exercises

2-6. Consider the function F (x) = xx. What is the domain such that F (x)
is real and well defined? Plot a graph of F (x). What is the limit of F (x)
at x = 0? (This is a one-sided limit because x < 0 is outside the domain.)
Estimate the minimum value of F (x).

[This function is very peculiar to a physicist. The functions xp and cx are
familiar (where p and c are constants) but xx never appears in physical
science! With calculus one can show that the minimum of xx is (1/e)(1/e).]

2-7. What is the limit of the function P (x) = sin(1/x) at x = 0?

Hint: Use a graphing calculator or computer graphics to plot a graph of
the function, as well as you can. This is a very pathological function! It
is continuous and bounded (between −1 and 1) but never settles down to a
limit as x approaches 0.
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