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Modeling subsurface charge accumulation images of a quantum Hall liquid
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Subsurface charge accumulation imaging is a cryogenic scanning probe technique that has recently been
used to spatially probe incompressible strips formed in a two-dimensional electron system~2DES! at high
magnetic fields. In this paper, we present a detailed numerical modeling of these data. At a basic level, the
method produces results that agree well with the predictions of models based on simple circuit elements.
Moreover, the modeling method is sufficiently advanced to simulate spatially resolved measurements. By
comparing directly the simulations to the experimentally measured data, we can extract quantitatively local
electronic features of the 2DES. In particular, we deduce the electron density of states inside the incompress-
ible strips and electrical resistance across them.
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I. INTRODUCTION

Recently developed scanning probe microscopy meth
based on electric-field sensing provide a new window i
the quantum mechanics of confined systems and may pl
significant role in characterizing future nanoelectron
devices.1–4 In particular, subsurface charge accumulati
~SCA! imaging is a cryogenic technique that locally me
sures the accumulation of mobile charges within a cond
ing system.5 By rastering the probe over the surface, we c
generate images that show the spatial patterns of
charging—even if the conducting layer is buried beneat
100-nm-thick dielectric. Rather than driving a transport c
rent through the conductor, which requires the application
a potential across it, we apply a single ac potential, as in
cated in Fig. 1. Due to capacitive coupling, the excitati
causes charge to flow in and out of the interior at the app
frequencyf. This results in an ac image charge at the apex
the probe, which we detect using a circuit constructed fr
field-effect transistors mounted in close proximity to the ti6

This paper focuses on modeling SCA measurements
two-dimensional electron system~2DES!.7 The application
of a perpendicular magnetic field can cause parts of the
terior of the 2DES to act as an insulator—a phenome
intimately connected to the quantum Hall effect. Many of t
key features observed in the quantum Hall effect may
explained in terms of the transport through the quasi-o
dimensional edge channels.8 Each channel is formed wher
the energy of the corresponding Landau level at the edg
the sample equals the Fermi energy. Theories predict tha
edge channels should be separated by narrow strips with
cisely integer Landau level filling.9,10 In the model, the strips
arise due to the low compressibility of the 2D electron s
tem at the cyclotron gap in the electron density of sta
between Landau levels. Our SCA measurements immedia
yield the spatial extent of the charging patterns. However
quantitatively extract local conductivity and compressibil
information, these data must be carefully compared to ca
0163-1829/2002/66~12!/125308~6!/$20.00 66 1253
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lations that account for the sample charging and the meas
ment technique itself.

The sample used for these measurements was
Al0.3Ga0.7As/GaAs wafer grown by molecular beam epitax
The 2DES forms from electrons that become trapped at
GaAs/AlGaAs interface 90 nm below the surface. The av
age electron density in this layer wasnb53.531011 cm22,
and the transport mobility was approximately
3105 cm2/V s. The measurements were performed with t
microscope immersed in liquid helium-3 at a temperature
300 mK. Most of the electric-field lines that terminate on t
tip electrode do so on portions far from the sharp ap
Hence we have a large background signal that adds an o
to the signal of interest, which we subtract away using
bridge circuit.6 To minimize the dc perturbation of the tip, w
typically fix the potential atfdc50.4 V. This compensate
for the tip-sample contact potential,11 eliminating dc electric
fields between the tip and 2DES.

In general, both the conducting layer’s self-capacitan
and the conductor-to-tip mutual capacitance will contribu

FIG. 1. Schematic of the SCA measurement and sample ge
etry. The applied ac excitationfexc causes charge to flow in and ou
of the 2D layer. This couples capacitively to the tip, resulting in
image charge, which we detect the using a circuit constructed f
field-effect transistors.
©2002 The American Physical Society08-1
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to the magnitude of the charging signal. A local suppress
of the signal may result from either low compressibility
low conductivity. The compressibility~i.e., density of states!
is given byD5dn/dm. D sets the amount of charge that w
accumulate in the 2DES for a given potential variation in
dc limit. With regard to the conductivity,RC charging time
effects may result in insufficient time to charge the reg
compared to the period of the ac excitation. As the 2D
longitudinal conductivity is very low in the vicinity of inte
ger filling, this possibility must be examined carefully. T
distinguish between the two mechanisms we study both
in-phase signalQin and the 90° out-of-phase~lagging! com-
ponentQout as a function of frequency. Therefore, we obta
two images simultaneously with each scan.

II. SIMPLE MODELS

To better understand our modeling scheme, presente
the next section, it is useful to first introduce simple mod
of charging. Moreover, these models will provide basic te
for the advanced method.

A. Single parallel plate capacitor

The induced charge on the tip is closely related to
local charging of the 2DES, as the tip will capture more fie
lines when it is above a region of relatively high char
accumulation. The simplest model of our system is a sin
parallel-plate capacitor, as shown in Fig. 2~a!. Although this

FIG. 2. Simple models for the system and corresponding exp
sions for the measured charge.~a! If RC charging delays are negli
gible, a single parallel-plate capacitor model provides an estim
for the compressibility contribution~D! to the signal.~b! If the
impedance of the 2D layer gives significant delays, the meas
ment probes the local potentialf(r ), which will have a phase shif
and reduced magnitude relative tofexc. Here Cmut is the tip-2D
mutual capacitance. In these cases, a simpleRC model, shown in
~c!, provides an intuitive picture of the charging. The sample
modeled as a single resistorR charging two capacitors to ground
Cmut and Cstray, whereCstray accounts for electric flux emanatin
from the 2DES that does not terminate on the tip.~d! Charging
characteristics of theRC model as a function of the excitation fre
quency f. Here C5Cmut1Cstray, and Qin and Qout are in the in-
phase and out-of-phase components of the charging, as describ
the text.
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is a severe simplification, if the 2DES is sufficiently condu
ing so that charging delays can be neglected~at a given fre-
quency!, the single-capacitor model can be used to crud
estimate the compressibility contribution to the signal. He
the applied excitation potential is assumed as a cons
across the sample, and the charge induced on the tip is
exclusively by the tip-sample mutual capacitanceC(D), to
which both the geometry and compressibility contribute. U
ing mks units,C(D) takes the following form:

C~D !}S h

«0
1

d

k«0
1

1

e2D D 21

, ~1!

whereh is the effective distance from the surface to the t
d is the 2DES depth below the surface, andk is the dielectric
constant of the semiconductor.12 Finally, the charge on the tip
is simply the product of the capacitance and the excitat
potential,qac5fexcC(D).

B. RC circuit

To describe systems for which either the bulk conduct
ity or local conductivity is sufficiently low to result in sig
nificant charging delays, the above model must
extended—as the magnitude and phase of the potential
vary with position. Hence, for more advanced models,
introduce the local effective potentialf(r ). With the tip cen-
tered abover, we can then write the charge induced as

qac~r !5f~r !Cmut, ~2!

whereCmut is the mutual capacitance between the tip and
layer.

Figure 2~b! shows the basic picture for charging the ti
As the potential propagates across the sample, its magni
is reduced and phase shifted by the resistance and
capacitance of the system along the path. Finally, the p
below the tip with potentialf(r ) determines the measure
charge, according to Eq.~2!. We can explicitly define the
measured charging componentsQin andQout using complex
notation for the potentials: fexc5fexc0e

ivt and f(r )
5f0(r )ei (vt1d), where the injection frequency isf 5v/2p
andd is the local phase delay. Defining the complex charg
per unit excitation voltage asQ5@f(r )/fexc#Cmut, the two
components are given byQin5Re$Q% andQout52Im$Q%.

Figures 2~c! and 2~d! present a simplified view of theRC
system, which in many respects provides the correct pic
for the conductivity contribution to the charging. We co
sider the sample as consisting of a single resistorR charging
two capacitors to ground:Cmut andCstray, whereCstray ac-
counts for electric flux emanating from the 2DES that do
not terminate on the tip. Figure 2~d! shows theQin andQout
components of tip charge for this model, whereC5Cmut
1Cstray. With respect to the in-phase charging, at freque
cies greater than the roll-off frequencyf 051/2pRC, the ex-
citation cycle is too short for full charging to occur. As
result, Qin diminishes monotonically with increasingf. In
contrast, the out-of-phase signalQout displays a peak atf 0 .
This behavior is easy to understand. At low frequenci
charging occurs rapidly compared to the period of excitati
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so the charge signal is in phase with the excitation andQout
is small. At intermediate frequencies, the charge lags the
citation andQout is large. At high frequencies, little charg
enters the sample, soQout andQin both tend to zero.

III. MEASUREMENTS AND ADVANCED MODELING

Figure 3~a! shows a SCA image of a ring-shaped featu
of reduced charging that appeared at applied magnetic fi
near 4 T. At the center of this area the sample was prep
to have a density maximum, resulting in an electron den
gradient ofdn/dx'531010/cm2 mm near the edges of th
ring.7 The dark feature marks the density contour near in
ger filling; in this case, four spin-split Landau levels a
filled (n54). As the field increases by a small increme
integer filling occurs at slightly higher densities. Indeed,
ring feature was observed to move up the density grad

FIG. 3. ~a! SCA image in the vicinity of a density maximum a
a magnetic field of 4.05 T. The density contour corresponding
n54 forms a dark ring for which the charging is reduced. To
vestigate the charging characteristics in detail, numerous mea
ments were acquired by scanning the tip along the indicated
~b! Schematic of the advanced method used to model the data~c!
Measurements~left! and best-fit modeling curves~right! of the ring
feature as a function of frequency and magnetic field. The in
show the parameters of the respective calculations, as describ
the text. Small background slopes were subtracted from each m
sured curve to compensate for drift effects.
12530
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and hence to shrink in diameter as expected. Figure 3~c! ~left
column! presents a series of measurements as the tip sca
across a single line through the center of the ring. BothQin
and Qout curves are plotted at four magnetic fields and
three different frequencies: 10, 30, and 100 kHz. We
that Qin(x) shows the greatest changes with respect tox at
4.3 T, where it is most reduced in the interior. In contra
Qout(x) shows the most structure at 4.1 and 4.2 T. The d
were normalized with respect to the in-phase curve at 4.3
this choice is sensible in the view that the interior signal
likely near zero—i.e., no charge entering—whereas the e
rior most likely represents full charging. The advanced mo
eling presented below supports this assumption.

In addition ton54, the ring also appeared at filling fac
tors n52 and 6 ~not shown!. The observed widths of the
rings for n52 and 4 were;0.6 and;0.4 mm, respectively.
These widths are about 3 times greater than predicted by
standard theoretical picture.10 This discrepancy was the mai
focus in Ref. 7. Disorder due to density fluctuations
charged donors in the doped layer of the sample repres
the most likely explanation.13,14 Effectively, these fluctua-
tions give rise to states within the gap between Landau
els, with the resulting increase in screening yielding wid
strips.

Two physical phenomena can cause structure in the lo
charging, both of which are expected to occur near inte
filling: ~1! a decrease in the local compressibility,D
5dn/dm, and ~2! a decrease in the local conductivitys.
Much of the data of Fig. 3 show out-of-phase structure,
dicating that the 2DES does not have enough time to fu
charge during the excitation cycle. Hence, in addition
compressibility variations, changes in conductivity must co
tribute significantly. To untangle the effects of these two ph
nomena, we have developed a numerical method that mo
the charging in two dimensions within the 2D layer—
generating calculations that can be compared directly to
measurements.

An important key to understanding the behavior of t
system is the ratio ofCmut to Cstray. Consider the charging o
a region of the 2DES of radiusL, situated directly below the
probe. Electric-field lines connect the charge within this
gion to the tip. If the tip is sharp and narrow compared toL,
the field lines terminate on the bottom up to a height of;L
above the apex. The result is a mutual capacitance of
proximately Cmut'2p«0L.15 For the PtIr tips used in this
study, the nominal radius of curvature was;50 nm with a
cone angle of;10°.16 So for micron-sized sample feature
we should indeed be in the sharp-tip limit. With respect
the stray capacitance, we can consider the self-capacitan
a disk-shaped region of radiusL near the surface of a sem
infinite dielectric slab: Cself'8(k11)«0L/2. Comparing
this to Cmut, we see that the self-capacitance is roughly
factor of k greater than the mutual capacitance. Therefo
due to the high permeability of GaAs,k512.5, we expect
Cself@Cmut. Last, in the limit of negligible mutual capaci
tance, Cstray5Cself. Hence we can conclude thatCstray
@Cmut in the sharp-tip limit.

The roll-off frequency represents another key parame
In contrast to the simple one-dimensional network of res
tors and capacitors, the realistic model of the 2DES m
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account for the distributedRC system that comprises th
layer. In general, a distributedRC system differs from the
model shown in Figs. 2~c! and 2~d! in that there is no unique
roll-off frequency. The roll-off frequency to charge a partic
lar region depends on its size and average resistance.
example, we can again consider a disk-shaped region o
diusL with effective resistanceRL . To simplify the example,
we assume that the surrounding 2DES is of arbitrarily l
impedance so that the injected potential is effectively app
right at the edge. As the self-capacitance is proportiona
the lateral dimension, we see that the roll-off frequency
charge this region isf 051/2pRC}1/RLL. So smaller length
scales charge more quickly. Even for a large resistance
L!1/k«0f 0RL , the region will charge effectively over th
period of the excitation.

We model the 2DES as a two-dimensional array of g
points, each with a distinct compressibility and conducti
ties to neighboring points. Following the above discussi
we assumeCstray@Cmut. In this limit it is reasonable to firs
calculate the complete charging within the interior of t
2DES due exclusively to its self-capacitance and electro
structure. This approach eliminates the need to repeat
time-consuming calculations for every position of the tip.
a last step, we find the resulting charge induced on the
due toCmut; here, we include the spatial resolution of th
probe as discussed below. By repeating the procedure
numerous arrays of trial conductivity~s! and compressibility
~D! patterns, we can generate sets of calculations to be c
pared directly to the experimental measurements.

As described below, for a given geometry of a distin
low-compressibility feature, such as a ring, we find thats
andD contribute in qualitatively different ways to the spati
distribution of the charging. Hence, if fits to the measu
ments can be found that reasonably reproduce the det
structures, we can assert with some confidence that the
rameters of the model represent an appropriate descriptio
the actual system. In this way, quantitative local compre
ibility and conductivity information can be extracted.

Figure 3~b! schematically shows the parameters of o
numerical routine, which calculates the effective ac poten
f(r ) for every point above anN3N grid, resulting from an
ac excitation of frequencyf injected uniformly around the
perimeter. In general, for each ofN2 pointsk, the compress-
ibility Dk and the longitudinal and Hall conductivitiessxx

k

and sxy
k to neighboring points represent adjustable para

eters. Given the dielectric properties of the semiconduc
and the distance of the 2DES below the surface, the rou
calculates the internal capacitance of the array. With the
ray’s conductivity and capacitance set, it is straightforward
calculate the effective potential of every point of the arrayfk
@i.e., f(r )], in analogy to the one-dimensional problem
Fig. 2~b!. The typical way to model capacitance measu
ments takes the mutual capacitance term to account for
compressibility contribution@e.g., Eq.~1!#. However, in our
scheme,Cmut is taken as a constant function to be includ
as the final step. Hence, as detailed in the Appendix,
adjust the effective potentialf(r ) to account for the 2DES
compressibility. The result is mathematically identical to t
standard approach.
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As the final step in the calculation, we find the char
induced on the tip due to the tip-2DES mutual capacitan
Although the 2DES potential directly below the tip predom
nantly determines the charge on the apex, more distant 2D
regions contribute significantly to the charge induced
other parts of the tip. Hence we must generalize the sim
expressionqac(r )5f(r )Cmut. To do this, we define a ca
pacitance function that varies according to the sample lo
tion, c(r 2r 0). This function represents the geometric m
tual capacitance between the 2DES and the tip per unit
of the 2D layer, for the tip positioned above locationr 0 .
Convolution with the effective potential then gives th
charge on the tip,

qac~r 0!5E f~r !c~r 2r 0!d2r . ~3!

The functionc(r 2r 0) is crucial as it determines the spa
tial resolution of the probe. We expect it to be a bell-shap
function peaked at the location of the apex and of wid
roughly equal to the tip-2DES separationH. For example,
taking the tip as a thin rod of constant thickness and wit
radius of curvature smaller thanH, the form ofc(r 2r 0) is
approximatelyH/AH21(r 2r 0)2.15 In general, the mutua
capacitance function depends on the exact shape, broade
with both the tip radius and angle of the conical portion
the tip. For the modeling presented here, we have use
numerically calculated form based on a realistic tip geo
etry: half cone angle510°, apex radius550 nm.17

Figure 3~c! compares the same measured data~left! to
calculated curves generated by our routine~right!. For the
calculated curves, the scanned area was modeled as
315 array of grid points. The 2DES parameters were cho
to be homogeneous, except for a ring of width of one g
spacing5400 nm. As an example, Fig. 3~b! shows the pat-
tern used for the 4.0- and 4.1-T curves. In order to mak
direct comparison, the convolution withc(r 2r 0) was per-
formed over a straight line across the diameter. As this fi
convolution is performed separately, we are free to choos
finer point spacing forr 0 . Hence the calculated curves a
smooth on the scale of 400 nm. The measured images
tated the ring diameters, and the experimental frequencf
were applied. Moreover, for all the points not on the ri
~interior and exterior!, sxx and D were set arbitrarily high.
Therefore, only the conductivity and compressibility para
eters on the ring itself represented free variables, adjuste
achieve the best fit to the measured data. Thesxx and D
best-fit parameters are shown as insets. We found that
calculations were independent of the Hall conductivitysxy
for the ring geometry. This should come as no surprise, c
sidering the similarity to the Corbino-disk geometry.

Comparing the measurements to the model, it is clear
our calculation successfully reproduced the general shape
the curves and evolution with magnetic field. The fits we
achieved by taking the modeled compressibility of the ri
asD(ring)5231011 cm22 eV21 for all values of the field.
However, it was necessary to use a range of values
sxx(ring) to reproduce the evolution with field of the interio
charging signal. At 4.0 T, the measurements show a h
8-4
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MODELING SUBSURFACE CHARGE ACCUMULATION . . . PHYSICAL REVIEW B66, 125308 ~2002!
interior in-phase signal and almost no out-of-phase struct
This is consistent with an arbitrarily highsxx(ring). By find-
ing the minimum conductivity consistent with a negligib
out-of-phase signal, we set a lower limit ofsxx(ring).5
31026e2/h. As the field increases, the measurements sh
a reduced in-phase signal, with significant out-of-pha
structure. Our model implies that this behavior stems from
drastically reduced conductivity across the ring. At 4.3 T,
best fit was achieved withsxx(ring)5631029e2/h—three
orders of magnitude lower that at 4.0 T.

We find that the shapes of the curves reflect the interp
between compressibility and resistivity features. Basically
reducedD(ring) by itself can reduce the charging only d
rectly on the ring. This accounts for the in-phase downw
spikes that appear nearx562 mm at 4.0 and 4.1 T, and
partially at 4.2 T, in both the measured and modeled curv
In contrast, a low conductivity restricts the flow of char
across the ring, resulting in a reduced in-phase signalevery-
where in the interior. Hence, instead of a ring shape, t
phenomenon produces a disk-shaped feature.

IV. COMPARISON TO SIMPLE MODELS

The advance modeling implies that the measured beha
arises from the reducedsxx andD of a low-compressibility
ring. As a check, we now compare this result to the sim
models introduced in Sec. II.

As the structure observed at 4.0 T is consistent with a
trarily high sxx(ring), it is reasonable to apply the sing
parallel-plate capacitor model introduced in Sec. II A to es
mate the compressibility reduction responsible for the
phase ring~seen as downward spikes!. Taking the ring as a
10% reduction ofQin , we apply Eq.~1! using d590 nm,
h510 nm, andk512.5. We then find that the simple mod
yields a reduced compressibility of D(ring)55
31011 cm22 eV21 ~a 60-fold reduction compared to th
zero-magnetic-field compressibility of D'3
31013 cm22 eV21). This roughly agrees with the valu
found by the advanced model of 231011 cm22 eV21. The
agreement is surprising considering that by neglecting
effects of stray capacitance, the single-capacitor model
quires the tip-sample mutual capacitance to account for m
of the electric-field lines emanating from the sample. In co
trast, the numerical routine assumes a smallCmut/Cstray to
calculate the effective potential without regard to the tip p
sition. Hence we may conclude that in this case the extra
value of the ring compressibility is fairly insensitive to th
details of the model.

With regard to the structure seen at 4.1–4.3 T, we
apply the simpleRC circuit shown in Figs. 2~c! and 2~d!.
Because we believe the resistance and capacitance are m
separated~i.e., not distributed! in the real system, theRC
model should approximately predict the correct magnitude
the signal interior to the ring;R is set by the low-
conductivity boundary, whereas the self-capacitance of
interior disk determinesC. Looking at the curves qualita
tively, we can conclude that at 4.2 T the system is near
out-of-phase peak. This follows from the observation that
measuredQout data have the maximum interior amplitud
12530
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and are fairly insensitive to frequency; at this same field,
Qin data have the maximum sensitivity to frequency. Th
behavior is consistent with 30 kHz;1/2pRC. Using C
51.0 fF for the capacitance of a 2-mm-radius disk near the
surface of the dielectric, we findR;5 GV. This implies
sxx(ring);131027e2/h, using a ‘‘number-of-squares’’ fac
tor consistent with a 400-nm ring thickness. This compa
well with 1.531027e2/h, the best-fitsxx(ring) of the ad-
vanced model at 4.2 T.

V. CONCLUSION

In summary, using subsurface charge accumulation im
ing, we have observed incompressible regions that evo
smoothly with magnetic field, consistent with quantum H
effect theories considering long-range potential fluctuatio
in the presence of disorder. In addition to observing the s
tial patterns of the signal, we have shown that by carefu
comparing the charge accumulation signal to modeling,
proximate values of the local compressibility and conduct
ity can be extracted from the measurements.

Surprisingly, we find that relatively small increments
the magnetic field lead to changes in the electrical resisti
across the incompressible strip of more than three order
magnitude. This drastic variation is approximately consist
with recent measurements of incompressible strips form
using metal gates deposited on a sample surface.18 Interest-
ingly, in both cases the strip resistivity was higher as the s
moved into the region of a higher-density gradient, where
width of the strip is expected to be smaller.10

APPENDIX

The purpose of this appendix is to give more details of
numeric calculations for our advanced modeling for charg
within the 2D layer. With the imaged area of the samp
defined as anN3N array of grid points, the starting point fo
the calculations is the charge conservation expression
each pointk:

dqk

dt
2(

l
I k,l50, ~A1!

where the charge term~first term! gives the rate of change o
the charge and the current term~second term! gives the total
current flowing into the grid point from the surroundin
points. As the current is a function of the potential of t
points, it can be rewritten,( l I k,l5( lSk,lw l or, in matrix no-
tation, SwW . HereS is anN23N2 matrix containing the con-
ductivitiessxx

k , sxy
k between adjacent pairs of points, andwW

is a vector withN2 elements—each corresponding to t
potential of a particular pointk. In linear response, the charg
term can also be expressed as a function ofwW by constructing
a capacitance matrixC, dqW /dt5( i2p f )qW 5( i2p f )CwW .

To find C, we first construct a potential matrixP that
considers the Coulomb interaction among all pairs of poin
invoking image charges to account for bound charges at
dielectric surface. The capacitance matrix is then given
C5P21. In contrast toS, which is nonzero only near the
8-5
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diagonal,C is an N23N2 matrix containing no zeros. Th
difference is that the conductivity of the grid can be d
scribed as a network of resistors connecting only neigh
ing points, whereas every point has a capacitance to e
other point~and a self-capacitance!. Substituting the new ex
pressions for the two terms in Eq.~A1!, we find

~ i2p f !CwW 2SwW 5QẆ source, ~A2!

where QẆ source gives the locations of the injected excitatio
and is only nonzero for points along the perimeter.

Equation~A2! describes correctly the internal potential
the grid. However, we have not yet included the effects
compressibility variations. Essentially, asD decreases, les
charge accumulates in the 2DES, which induces less ch
on the tip. In other words, the mutual capacitance is redu
But because our scheme takesCmut as a constant, we mus
account for this effect as a reduction in potential.

We include the compressibility contributionDk by alter-
ing the second term of Eq.~A2!, which controls the curren
flowing into each point. For example, to account for a lo
compressibility of pointk, we adjust theS matrix so that
more current flows intok as a function ofwk . Therefore, to
conserve current,wk must be reduced. The appropriately a
justed conductivity matrixS8 is found by defining a secon
potential matrixP8. HereP8 is identical toP except that it
includes the compressibility contributionDk for the inverse
self-capacitance of each grid point:

Pkk8 5Pkk1
1

e2Dk
.

S85SP8C replacesS in Eq. ~A2!.
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-

Solving for wW , we obtain

wW 5@C1~ i /2p f !S8#21QW source, ~A3!

whereQW source5QẆ source/ i2p f . Hence, for a givenC, S8, and
QW source, we can calculate the effective potentialwW of each
point of the array. Note that this is not an iterative calculat
yielding an approximate solution. Rather, we arrive direc
at the exactwW using Eq.~A3!.

As the scanned area is part of a much larger sample,
calculated structure arising from proximity of the arra
edges has no physical meaning. We remove such artifac
using periodic boundary conditions. Measured features
ing from significant structures beyond the scanned area
lead to discrepancies with the calculations which are con
erably harder to correct. However, we emphasize that th
nonlocal effects can only lead to broad features and ca
produce structure at length scales;100 nm. As the final step
in the calculation, we find the charge induced on the
which allows a direct comparison to the measurements.
is accomplished using Eq.~3! of Sec. III.
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