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Michigan State University, Fall Semester 2012

Solve by: Wednesday, November 21, 2012

Homework 10 – Solution

10.1. Show that for a diatomic chain (two different masses M1 and M2 that interact with same force
constant C, as given in Eq. (18) of Kittel Chapter 4), the ratio of the displacements of the two atoms u/v
for the k = 0 optic mode is given by

u

v
= −M2

M1
,

as shown in Eq. (26) of Kittel Chapter 4.

Solution:

From the first equation listed under Eq. (20) in Kittel Chapter 4, we get

u

v
=
C(1 + e−ika)

2C −M1ω2
. (1)

For the optic mode with k = 0, we have

ω2
opt = 2C

(
1

M1
+

1

M2

)
. (2)

Substituting the expression for ω from Eq. (2) in Eq. (1), we get for this mode

u

v
= −M2

M1
. (3)

10.2. This problem is similar to Problem 10.1., but for zone boundary modes (k = π/a), and is based
on Kittel Chapter 4, Problem #3. For the linear harmonic chain treated by Eqs. (18) to (26) in Kittel
Chapter 4, find the amplitude ratios u/v for the two branches at kmax = π/a. Show that at this value
of k the two lattices act as if they were decoupled: one lattice remains at rest while the other lattice moves.

Solution:

There are two zone boundary modes, namely ω2
1 = 2C/M1 and ω2

2 = 2C/M2. Assume M1 > M2.
Therefore, ω1 < ω2.

For ω1, use the the second equation of Eq. (20) in Kittel Chapter 4, i.e.

u

v
=
C(eika + 1)

2C −M2ω2
.

Thus, for ω = ω1 and k = π/a we get
v

u
= 0 .

Consequently, only the masses M1 move, while masses M2 are at rest.
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Similarly, for for ω = ω2 and k = π/a, we can use the first equation of Eq. (20) in Kittel Chapter 4 and
show that

u

v
= 0

in that case, meaning that only the masses M2 move, while masses M1 are at rest.

10.3. This problem for a diatomic chain is based on Kittel Chapter 4, Problem #5. Consider the normal
modes of a linear chain, in which the force constants between nearest-neighbor atoms are alternately C
and 10C. Let the masses be equal, and let the nearest-neighbor separation be a/2. Find ω(k) at k = 0
and k = π/a. Sketch in the dispersion relation by eye. This problem simulates a crystal of diatomic
molecules such as H2.

Solution:

We will call the alternating force constants C1 and C2. For one type of atoms, the force constant C1 is
on the right and the force constant C2 is on the left. For the other type of atoms, C2 is on the right and
C1 is on the left. The equations of motion for these two sites are

M
d2us
dt2

= C2(vs − us) + C1(vs−1 − us) = C2vs + C1vs−1 − (C1 + C2)us

M
d2vs
dt2

= C2(us − vs) + C1(us+1 − vs) = C2us + C1vs+1 − (C1 + C2)vs .

Try periodic solutions of the form

us = uei(ksa−ωt) and vs = vei(ksa−ωt) .

This leads to the eigenvalue equation(
C1 + C2 −Mω2 −(C2 + C1e

−ika)
−(C2 + C1e

+ika) C1 + C2 −Mω2

)(
u
v

)
= 0 .

The two solutions are
Mω2

± = (C1 + C2)± (C2
1 + C2

2 + 2C1C2 cos ka)1/2 .

Now, chose C1 = C and C2 = 10C. The solutions are

ω1(k = 0) = 0 and ω2(k = 0) =
√

22 C/M ,

ω1(k = π/a) =
√

2 C/M and ω2(k = π/a) =
√

20 C/M .

The zero-frequency mode at k = 0 is called the Goldstone mode.

10.4. This problem on singularities in the density of vibrational states is based on Kittel Chapter 5,
Problem #1.

(a) From the dispersion relation derived in Chapter 4 for a monatomic linear lattice of N atoms with
nearest neighbor interactions, show that the density of vibrational states is

D(ω) =
2N

π
· 1

(ω2
m − ω2)1/2

,

where ωm is the maximum frequency. The singularity at ω0 is called a van Hove singularity.
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(b) Suppose that an optical phonon branch has the form ω(k) = ω0−Ak2 near k = 0 in three dimensions.
Show that D(ω) = (L/2π)3(2π/A3/2)(ω0 − ω)1/2 for ω < ω0 and D(ω) = 0 for ω > ω0. Here the
density of vibrational states is discontinuous.

Solution:

From Eq. (15) in Kittel Chapter 5 we get

D(ω) =
L

π

1

dω(k)/dk
,

where L = Na. For the 1D chain we have

ω(k) =

√
4C

M
sin(ka/2) = ωm sin(ka/2)

dω(k)

dk
= (ωm a/2) cos(ka/2) = (ωm a/2)

√
1−

(
ω(k)

ωm

)2

.

Using ω(k) = ω and combining all equations, we get

D(ω) =
2L

πa

1√
ω2
m − ω2

for 0≤ω≤ωm .

10.5. This problem on the heat capacity of a layered solid in the Debye approximation is based on Kittel
Chapter 5, Problem #4.

(a) Consider a dielectric crystal made up of layers of atoms, with rigid coupling between layers so that
the motion of the atoms is restricted to the plane of the layer. Show that the phonon heat capacity
in the Debye approximation in the low temperature limit is proportional to T 2.

(b) Suppose instead, as in many layered structures, that adjacent layers are very weakly bound to each
other. What form would you expect the phonon heat capacity to approach at extremely low temper-
atures?

Solution:

Thermal energy associated with phonons is given by

U =

∫ ωD

0
dωD(ω)

h̄ω

eh̄ω/kBT − 1
,

where the density of states D(ω) depends on the type of the mode (acoustic or optic, longitudinal or
transverse). For a particular mode in the 2D lattice we have

D(ω) =

(
L

2π

)2

2πk
1

dω(k)/dk
,

ω(k) = ω = vk ,

D(ω) =
A

2πv2
ω .

Assuming that the one longitudinal and the two transverse modes have the same speed of sound v, we
obtain

U = 3
Ah̄

2πv2

∫ ωD

0
dω

ω2

eh̄ω/kBT − 1
.
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The Debye frequency ωD is obtained using

∫ ωD

0
D(ω)dω = N =

A

2πv2

∫ ωD

0
ω dω ⇒ ωD =

√
4πN

A
v .

We then can determine U by substituting

h̄ω

kBT
= x ; xD =

h̄ωD

kBT
=

ΘD

T
,

U =
3Ah̄k3

B

2πv2h̄3T
3
∫ xD

0

x2

ex − 1
dx .

For T << ΘD, i.e. for temperatures much smaller than the Debye temperature, we find that xD → ∞.
Then,

U =
3Ah̄k3

B

2πv2h̄3T
3I , where I =

∫ ∞
0

x2

ex − 1
dx .

Using this equation for the thermal energy associated with 2D phonons, we get the heat capacity

CV =
dU

dT
= 18NkBI

(
T

ΘD

)2

.

This is the T 2 law in 2 dimensions.
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