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Solve by: Wednesday, September 5, 2012

Homework 1 – Solution

1.1. Using a hydrogenic model, estimate the 1st ionization energy of a Li atom, assuming that the two
electrons in the 1s state essentially screen the nuclear charge, thus making its effective charge +1e. The
observed value of the 1st ionization energy is 5.39 eV. Discuss possible physical reasons for the difference
between the estimated and the observed value.

Solution:

Assuming naively that the nuclear charge is screened by the 1s core electrons, we may consider this to
be close to a hydrogen atom with the ionization potential of I = 13.6 eV. This is significantly more than
the observed value.

Now, the valence electron is in the 2s, not 1s state of the hydrogen atom. The ionization energy is much
smaller, I = Rydberg/n2 = 13.6/4 eV=3.4 eV.

Next, consider the fact that the 2s electron penetrates the core region, where screening by the 1s elec-
trons is not that effective. This increase the attraction, thus increasing the binding energy from 3.4 eV
to 5.39 eV.

1.2. Calculate the 3rd ionization energy of the Li atom. Is your answer exact?

Solution:

The binding energy of the nth state is given by En = −Z2

n2 Ryd. With Z = 3 and n = 1, the 3rd ionization
energy of the Li atom is I = 9×13.6 eV=122.4 eV. This value is exact, since no other electrons are present.

1.3. What is the probability of finding the 1s electron in Pb81+ inside the Pb nucleus? Assume that the
nuclear radius R = r0A

1/3, where r0 = 1.2 fermi and A is the atomic mass number (which differs from
the atomic number Z!) of Pb.

Solution:

Since the atomic number of Pb is Z = 82, Pb81+ contains only one electron and can be treated by the
hydrogenic model with the length scale reduced by Z = 82. The normalized wave function is given by

ϕ1s =
1√
πã3B

e
− r

ãB ,

where we define a reduced Bohr radius by

ãB =
h̄2

me2Z
.

The probability to find the 1s electron inside the nucleus of radius R is

P =

∫ R

0
|ϕ1s|2r2drdΩ .
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First assume that the electron wave function decays very little (confirm this approximation later) and use
its value at the origin. This gives

P =
1

πã3B
V ,

where V is the volume of the nucleus. The mass number of Pb, which you can look up, is A = 207.19
(this is an average over most abundant isotopes). Plugging in all the numbers you should find

P =
4

3

(
R

ãB

)3

= 2.1×10−6 .

This probability is quite small. The assumption of replacing the wave function by its value at the origin
in the integral for P should thus be quite good.

1.4. Excitons in quantum wells and their binding energies can be approximated by a 2-dimensional (2D)
hydrogen atom model. To use this description, first separate the radial part R(r) and the angular part
Y (θ) of the wavefunctions in the Schrödinger equation. Show that the radial part of the wavefunctions is
the solution of (in atomic units)

1

2
(R′′ +

1

r
R′)− m2

2r2
R+ (E +

1

r
)R = 0 .

The angular part of the wave functions is given by eimθ. R′ is the first and R” the second derivative
of R(r) with respect to r. Use the same scaling that was used in the 3D case in defining the variable
ρ = κr. Use κ = (−2E)1/2 when writing down the second order differential equation for R(ρ) in terms of
the parameter ρ0 = 2/κ. How does R(ρ) behave as ρ→0 and ρ→∞? Define a function v(ρ) following the
same procedure as in the 3D case. Solve this equation and identify physical solutions, which provide the
spectrum of the 2D hydrogen atom.

Solution: [
−1

2
∇2 − 1

r

]
φ(~r) = Eφ(~r) , where ~r = (r, θ) .

Then separate
φ(~r) = R(r)Y (θ)

and use the expression

∇2 =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
in 2D. The Schrödinger equation then becomes

2r2

2R

(
d2R

dr2
+

1

r

dR

dr

)
+

1

Y

d2Y

dθ2
+ 2r2

(
1

r
+ E

)
= 0 for all r and θ ;

1

Y

d2Y

dθ2
= −m2 ;

1

2

(
d2R

dr2
+

1

r

dR

dr

)
− m2

2r2
R+

(
1

r
+ E

)
R = 0 .

In 3D this becomes
1

2

(
d2R

dr2
+

1

r

dR

dr

)
− l(l + 1)

2r2
R+

(
1

r
+ E

)
R = 0 .

To solve the 2D case, same as in 3D, use κ =
√
−2E, ρ = κr, and ρ0 = 2/κ. Then,

d2R

dρ2
+

1

ρ

dR

dρ
− m2

ρ2
R+

(
ρ0
ρ
− 1

)
R = 0 .
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The spectrum is symmetric under m→−m. So we can choose m≥0. After looking at the ρ→0 and ρ→∞
behavior of R(ρ), we define R(ρ) = ρme−ρv(ρ), where v(ρ) satisfies

ρv′′(ρ) + (2m+ 1− 2ρ)v′ − (2m+ 1− ρ0)v = 0

with

v′′ =
d2v

dρ2
and v′ =

dv

dρ
.

Now use a power series expansion for

v(ρ) =
∞∑
0

cjρ
j .

Substitute v(ρ) in the above differential equation for v(ρ) and equate terms with the same power of ρj .
Then you get

cj+1 =
2j + 2m+ 1− ρ0

j(j + 1) + (j + 1)(2m+ 1)
cj .

For bound-state solutions, as in the 3D case, the power series for v(ρ) must terminate. This gives

ρ0 = 2jmax + 2|m|+ 1 for jmax≥0 ,

where we have used the m = −m symmetry to replace m by |m|. Finally we get

ρ0 = 2k + 1 with k = 0, 1, 2, . . . ;

κ =
2

ρ0
=

2

2k + 1
;

E = −1

2
κ2 = −1

2

1

(n− 1/2)2
with n = 1, 2, 3, . . . .
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