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Homework 2 – Solution

2.1. Calculate the ground state energy of a hydrogen atom using the variational principle. Assume that
the variational wave function is a Gaussian of the form

Ne−( rα)
2

,

where N is the normalization constant and α is a variational parameter. How does this variational energy
compare with the exact ground state energy?

You will need these integrals:∫ ∞
0

xe−x
2
dx =

1

2
;

∫ ∞
0

x2e−x
2
dx =

√
π

4
;

∫ ∞
0

x4e−x
2
dx =

3
√
π

8
.

Solution:

E(α) =
< ψ(α)|H|ψ(α) >

< ψ(α)|ψ(α) >
= min.

Use

ψ = Ne−( rα)
2

and < ψ|ψ >= 4πN2
∫ ∞
0

e−2(
r
α)

2

r2dr .

Change variable to x =
√

2 rα to get for the denominator

< ψ(α)|ψ(α) >= 4πN2
(
α√
2

)3 ∫ ∞
0

x2e−x
2
dx = 4πN2 α3

8
√

2

√
π .

In the numerator, we consider the kinetic and the potential part separately. For the kinetic part, we get

< ψ(α)|T |ψ(α) > = −1

2

∫
ψ∗∇2ψ ~dr

= −1

2
4πN2

∫ ∞
0

r2dre−( rα)
2
[

1

r2
d

dr
r2
d

dr

]
e−( rα)

2

= −4π

α2
N2

∫ ∞
0

(
3r2 − 2r4

α2

)
e−2(

r
α)

2

dr .

Change the variable again to x =
√

2 rα to obtain

< ψ(α)|T |ψ(α) > =
12πN2

α2

(
α√
2

)3 ∫ ∞
0

x2e−x
2
dx− 8πN2

α4

(
α√
2

)5 ∫ ∞
0

x4e−x
2
dx

= 4πN2α
6
√
π

32
√

2
.

Consequently,
< ψ(α)|T |ψ(α) >

< ψ(α)|ψ(α) >
=

3

2α2
.
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Similarly,

< ψ(α)|V |ψ(α) > = −4πN2
∫ ∞
0

r2e−2(
r
α)

2 1

r
dr

= −4πN2
(
α√
2

)2 ∫ ∞
0

xe−x
2
dx

= −4πN2

(
α2

4

)
.

Thus,
< ψ(α)|V |ψ(α) >

< ψ(α)|ψ(α) >
= − 1

α

√
8

π
.

Combining all our results, the trial energy (variational energy) is

E(α) =
3

2α2
−
√

8

π

1

α
.

Minimizing the trial energy with respect to the variable α, we get

amin = 3

√
π

8

and

Emin =
4

3π
− 8

3π
= − 4

3π
Hartree = −11.54 eV .

This is about 2 eV higher than the exact energy. Not bad!

2.2. Use the virial theorem which states that 2 < T >=< ~r · ~∇V >and show that for the hydrogen atom

< ψnlm|
1

r
|ψnlm >=

1

n2aB
.

Solution:

2 < T >=< ~r·∇V >=

〈
r
e2

r2

〉
= − < V > .

For the nth energy level,

En = < T >n + < V >n= +
1

2
< V >n

= −1

2

〈
e2

r

〉
n

= − me4

2h̄2n2
.

Substituting

aB =
h̄2

me2

we get

< ψnlm|
1

r
|ψnlm >=

〈
1

r

〉
n

=
1

n2aB
.
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2.3. Use the Hellmann-Feynman theorem, which states that

∂En
∂λ

=< ψn|
∂H

∂λ
|ψn >

to show that for a hydrogen atom

< ψnlm|
1

r
|ψnlm >=

1

n2aB
,

< ψnlm|
1

r2
|ψnlm >=

1

(l + 1
2)n3a2B

.

Solution:

< ψnlm|
1

r
|ψnlm >=

1

n2aB

has been worked out in Class using the Hellmann-Feynman theorem and e2 = λ as a parameter. So we
only need to prove

< ψnlm|
1

r2
|ψnlm >=

1

(l + 1
2)n3a2B

.

After separating the radial and angular parts, the effective Hamiltonian for the hydrogen atom can be
written as

H = − h̄2

2m

[
1

r2
d

dr
r2
d

dr
− l(l + 1)

r2

]
− e2

r
≡H(l) .

The Hellmann-Feynman theorem gives

< ψnl|
∂H(l)

∂l
|ψnl > =

∂Enl
∂l

,

h̄2

2m
(2l + 1)

〈
1

r2

〉
nl

= − ∂
∂l

[
me4

2h̄2n2

]
= − ∂

∂l

[
me4

2h̄2(jmax + l + 1)2

]

=

[
me4

h̄2(jmax + l + 1)3

]
=
me4

h̄2n3
.

< ψnlm|
1

r2
|ψnlm >=

〈
1

r2

〉
nl

=
1

(l + 1
2)n3a2B

.

2.4. Using the first order perturbation results for E
(1)
mv, where mv denotes mass-velocity, and for E

(1)
so ,

where so denotes spin-orbit, show that

E(1)
mv + E(1)

so = E
(1)
fs =

(E0
n)2

2mc2

(
3− 4n

j + 1
2

)
,

where fs denotes fine structure and j is the total angular momentum containing orbital angular momen-
tum plus spin.
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Solution:

E(1)
mv = −(E0

n)2

2mc2

[
4n

l + 1
2

− 3

]

E(1)
so = −(E0

n)2

mc2
n

[
j(j + 1)− l(l + 1)− 3

4

l(l + 1
2)(l + 1)

]
.

Adding the two expressions we obtain E
(1)
fs . Since s = 1/2, we have j = l + 1/2 or j = l − 1/2. This

means that l = j − 1/2 or l = j + 1/2. Eliminate l from the above equation for each value of l. Do the
algebra and you will get the answer in terms of j.
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