Today:

- Force, momentum, and speed
- Free body-diagrams

Irish Phrasebook

craic – fun, news, gossip

Any craic?; What's the craic?; Sure we'll go for the craic

Announcements

- Ch 1 on-paper homework due Monday in class
 - Bring your answers to Part D to class on Friday for a peer-feedback activity
- Ch 2 LON-CAPA homework due on Friday night
 - Help room starts tomorrow
- Reading questions for Ch 3.1-3.4 due on Monday
- JS-Math instructions were sent in the email

You are pulling the block along a table To keep the block moving at constant speed you need to

- A. Pull with a decreasing force.
- B. Pull with a constant force.
- C. Pull with an increasing force.
- D. Not pull at all.

You are pulling the block along a table To ensure that the block's momentum increases at a constant rate you need to

- A. Pull with a decreasing force.
- B. Pull with a constant force.
- C. Pull with an increasing force.
- D. Not pull at all.

You are pulling the block along a table To ensure that the block speeds up at a constant rate you need to

- A. Pull with a decreasing force.
- B. Pull with a constant force.
- C. Pull with an increasing force.
- D. Not pull at all.

Momentum is a vector quantity

Changing momentum of a cue ball in pool

Lets take a closer look – What is the direction of the force?

What is the direction of the net force on the cue ball?

What is the direction of the force on the cue ball?

What is the direction of the net force on the cue ball?

What is the direction of the force on the cue ball?

A block sits <u>at rest</u> on a frictionless surface. Which of the following sketches most closely resembles the correct free-body diagram for all forces acting on the block? (Each red arrow represents a force. Observe number and direction, <u>but ignore lengths</u>)

A block sits <u>at rest</u> on a frictionless surface. Which of the following sketches most closely resembles the correct free-body diagram for all forces acting on the block? (Each red arrow represents a force. Observe number and direction, <u>but ignore lengths</u>)

Now, the same block moves with a <u>constant</u> <u>velocity to the right</u> on the **frictionless** surface. Which of the following most closely resembles the correct free-body diagram for all forces acting on the block?

Now, the same block moves with a constant velocity to the right on the frictionless surface. Which of the following most closely resembles the correct free-body diagram for all forces acting on the block?

