Prof. Vashti Sawtelle Prof. Leanne Doughty

Today:

Free-body diagrams and Systems Schema Newton's 3rd Law Normal force

Irish Phrasebook

How's she cutting? — very country way of saying hello (equivalent to "how's it going?"

- Consider dog 2 in the two-dog tug-of-war.
 He isn't moving. Why not?
- Draw a free body diagram that shows why he isn't moving.

Reading Q: How many forces do I know put in my free-body diagram?

Analysis Tool: System Schema

- Identify all objects that influence the situation you are describing, represent each object with a circle and a label.
 - Identify all interactions
 between the objects.
 Represent each interaction
 with a two headed arrow, and
 label the interaction

Back to our cue ball

Represent the interaction where the pool cue hits the cue ball with a systems schema and a free body diagram

Consider a heavy truck ramming into a parked, unoccupied car.

According to *common sense*, which force is larger during the collision:

- A. the force exerted by the truck on the car
- B. the force exerted by the car on the truck
- C. both forces are equal in magnitude

Consider a heavy truck ramming into a parked, unoccupied car.

According to *Newton's 3rd Law*, which force is larger during the collision:

- A. the force exerted by the truck on the car
- B. the force exerted by the car on the truck
- C. both forces are equal in magnitude

Refining our intuition:

Suppose the truck's mass is 2000 kg while the car's mass is 1000 kg. And suppose the truck slows down by 5 m/s during the collision. Intuitively, how much speed does the car gain during the collision?