Today:

Chapter 11 – Conservation of Momentum Chapter 8 – Circular Motion

Irish Phrasebook

Lets make shapes - Lets get out of here

Announcements

- Upcoming assignments:
 - LON-CAPA HW for Ch8 due Fri. 13th (will open later today)
 - Reading Q's for Ch9 due Tues. 10th

Suppose you are on a cart, initially at rest on a track with negligible friction.

You throw balls at a partition that is rigidly mounted on the cart.
The balls bounce straight back as shown in the figure.

Is the cart put in motion?

- A. Yes. Towards the left
- B. Yes. Towards the right.
- C. No.
- D. You are not given enough information to decide.

Suppose you are on a cart, initially at rest on a track with negligible friction.

You throw balls at a partition that is rigidly mounted on the cart.
The balls bounce straight back as shown in the figure.

- A. Yes. Towards the left
- B. Yes. Towards the right.
- C. No.
- D. You are not given enough information to decide.

If everything is in the system – then momentum is conserved. So the balls shooting off to the right means the cart must move to the left.

Types of Collisions

- "Elastic" -> collide and don't stick together
- "Inelastic" -> collide and stick together

As long as both objects are in the system, momentum is conserved in both types of collisions

Two cars are initially at rest on a frictionless surface and are blown apart by an explosion. The one with twice the mass ends up moving to the right at 10 meters/second. The less massive car ends up moving to the left at what speed?

- A. 5 m/s
- B. 10 m/s
- C. 14.1 m/s
- D. 20 m/s
- E. 25 m/s

Two cars are initially at rest on a frictionless surface and are blown apart by an explosion. The one with twice the mass ends up moving to the right at 10 meters/second. The less massive car ends up moving to the left at what speed?

- A. 5 m/s
- B. 10 m/s
- C. 14.1 m/s
- D. 20 m/s
- E. 25 m/s

If we think of the explosion as a force that changes the momentum of both carts; then the change in momentum must be equal. So if one cart is 2M of the other, the smaller one must go 2V = 20 m/s.

A car with a mass M is moving toward another car with a mass 2M on a frictionless surface. Both cars have a speed of 10 m/s. Subsequently, they collide and stick together. What is the final velocity of the system?

- A. -5 m/s
- B. -3.33 m/s
- C. 0 m/s
- D. +3.33 m/s
- $E_{\rm s}$ +5 m/s

A car with a mass M is moving toward another car with a mass 2M on a frictionless surface. Both cars have a speed of 10 m/s. Subsequently, they collide and stick together. What is the final velocity of the system?

A. -5 m/s

B. -3.33 m/s

C. 0 m/s

D. +3.33 m/s

E. +5 m/s

$$P(i) = p(f)$$

Initial: m(10) - 2M(10) = -10(M) m/s

+x

Final: (m+2M)v = -10(M) m/s

so v = -3.33 m/s

Chapter 8 – Turning the corner: 2D/3D motion

Reading Questions

Can you address circular motion as a model for more complex motions with an example on how to do so?

I need help finding out where the position and velocity vectors point in regards to an orbit

I'm not sure I understand what centripetal force is exactly.

A lot of the equations and symbols were hard to interpret.

Hitting a ball so it moves in a circle - Observation experiment

http://paer.rutgers.edu/pt3/
experiment.php?topicid=5&exptid=56