Today:

Chapter 8 – Circular Motion & Angular Momentum

Irish Phrasebook

Odious – Adjective to mean really good or really bad depending on how it's said

Exam 2 - Overall

Exam was still a little long – 10 points being added Average: 72% +/- 16%

Exam 2 - Observations

- Q1, Torque
 - Incorrect ranking of B and C
 - RHR

- Q2, Friction
 - Motion and momentum forces
 do not exist
 - Coefficient of friction is not equal to tanθ

Exam 2 - Observations

- Q3, Velocity Graph
 - Flat line is 0 acceleration
 - Be careful of concavity

- Q5, Ranking max heights
 - Mass is not a factor
 - Rank based on initial velocities

Announcements

- Grade updates:
 - Ch 6&7 On-paper back Friday
 - Overall grade update by Friday

 Alanna has office hours in the help room after class today until 2:30pm

Reading Q's for Ch 10 due Thursday 12th

LON-CAPA HW for Ch8 due Fri. 13th

Angular velocity (ω)

We usually talk about the object's motion relative to the x-axis

- So counterclockwise is positive
- Clockwise is negative

We talk about the motion as an object has moved through a distance s (arc length) through an angle (θ)

A pocket watch and Big Ben are both keeping perfect time. Which minute hand has the larger magnitude linear velocity v?

- A. Pocket watch's
- B. Big Ben's
- C. Same v on both

A pocket watch and Big Ben are both keeping perfect time. Which minute hand has the larger magnitude angular velocity ω ?

- A. Pocket watch's
- B. Big Ben's
- C. Same ω on both

Angular Acceleration

What happens if the angular velocity changes?

•
$$\alpha = \Delta \omega / \Delta t$$
 $\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$

Rate of change of the angular velocity

A student sees the following question on an exam:

A flywheel with mass M=120kg, and a radius r=0.6m, starting at rest, has an angular acceleration of $\alpha=.1$ rad/s². How many revolutions has the wheel undergone after 10 s?

Which formula should the student use to answer the question?

A.
$$\omega = \omega_0 + \alpha t$$

B.
$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

C.
$$\omega^2 = \omega_0^2 + 2\alpha \Delta\theta$$

What we have so far

Linear Motion

- $v_f = v_0 + at$
- $\Delta x = v_0 t + \frac{1}{2} a t^2$
- $v_f^2 = v_0^2 + 2a \Delta x$

Angular Motion

- $\omega_f = \omega_0 + \alpha t$
- $\Delta\theta = \omega_0 t + \frac{1}{2}\alpha t^2$
- $\omega_f^2 = \omega_0^2 + 2\alpha\Delta\theta$

What we have so far

Linear Motion

- $v_f = v_0 + at$
- $\Delta x = v_0 t + \frac{1}{2} a t^2$
- $v_f^2 = v_0^2 + 2a \Delta x$
- $\overrightarrow{F}_{net} = m\overrightarrow{a}$
- $\overrightarrow{p} = \overrightarrow{m} \overrightarrow{v}$

Angular Motion

- $\omega_f = \omega_0 + \alpha t$
- $\Delta\theta = \omega_0 t + \frac{1}{2}\alpha t^2$
- $\omega_f^2 = \omega_0^2 + 2\alpha\Delta\theta$
- $\overrightarrow{\tau}_{net} = \overrightarrow{r} \times \overrightarrow{F} = I\alpha$
- $\vec{L} = \vec{r} \times \vec{p} = I\omega$